Mike chose

Mike chose 4 identical cubes, 3 identical prisms and 2 identical cylinders from the kit. The edge of the cube is 3 cm long. The prism has two dimensions the same as the cube, its third dimension is 2 times longer. The diameter of the base of the cylinder is 3 cm and the cylinder is as high as the cube.

What is the total volume of these bodies?

Correct answer:

V =  312.4115 cm3

Step-by-step explanation:

a=3 cm V1=a3=33=27 cm3 V2=a a (2 a)=3 3 (2 3)=54 cm3  D=3 cm  r=D/2=3/2=32=1.5 cm V3=π r2 a=3.1416 1.52 321.2058 cm3  V=4 V1+3 V2+2 V3=4 27+3 54+2 21.2058=312.4115 cm3



Did you find an error or inaccuracy? Feel free to write us. Thank you!



avatar







Tips to related online calculators
Tip: Our volume units converter will help you with the conversion of volume units.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions:

  • Cuboid to cube
    cube_shield A cuboid with dimensions of 9 cm, 6 cm, and 4 cm has the same volume as a cube. Calculate the surface of this cube.
  • Four prisms
    hranol4b Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm2 b) 300 cm2 c) 3000 cm3 d) 300 cm3 Question No.2: The prism base is a rhombus with a side length of 30 cm and a height of 27 cm. The height of t
  • Prism 4 sides
    kvader11 Find the surface area and volume four-sided prism high 10cm if its base is a rectangle measuring 8 cm and 1.2dm
  • Cube corners
    2cube The wooden cube with edge 64 cm was cut in 3 corners of cube with edge 4 cm. How many cubes of edge 4 cm can be even cut?
  • Water block
    cukr A block with a 50 cm2 base is filled with water 5 cm under the edge. How many can sugar cubes with 2 cm edge be thrown into a container that overflow water?
  • For thinkings
    glass_cubes The glass cube dive into the aquarium, which has a length of 25 cm, width 20 cm and height of 30 cm. Aquarium water rises by 2 cm. a) What is the volume of a cube? b) How many centimeters measure its edge?
  • Identical cubes
    cubes3 From the smallest number of identical cubes whose edge length is expressed by a natural number, can we build a block with dimensions 12dm x 16dm x 20dm?
  • Cuboid
    Cuboid_BBC How many times will increase the volume of a cuboid, if one dimension is twice larger, second dimension three times larger and third dimension four times lower?
  • The cube
    cubes The cube has an edge of 25 cm. We cut it into small cubes of 5 cm long side. How many of these little ones left when we build a new cube of 20 cm in length?
  • Prism
    cuboid Three cubes are glued into a prism. The sum of the lengths of all its edges is 115 cm. What is the length of one edge of the original cube?
  • Prism
    rhombic_prism Calculate the surface area and volume of a prism with a body height h = 10 cm, and its base has the shape of a rhomboid with sides a = 5.8 cm, b = 3 cm, and the distance of its two longer sides is w = 2.4 cm.
  • Right triangular prism
    hranol3b We have a cuboid with a base and dimensions of 12 cm and 5 cm and a height of 4 cm. The tablecloth is cut into two identical triangular prisms with right triangular bases. We painted the surface of the created prisms with color. Calculate the surface area
  • Cube 3
    krychle How many times will increase the volume of a cube if we double the length of its edge?
  • A plasticine
    cubes3 Jožko modeled from plasticine. He used 27g of plasticine to model a 3 cm long cube. How many grams of plasticine will it need to mold cubes with an edge of 6cm?
  • The number
    cubes3 The number of 1 cm cubes required to make 4 cm cube is?
  • Perpendicular prism
    hranol3b Calculate the volume of the perpendicular prism if its height is 60.8 cm and the base is a rectangular triangle with 40.4 cm and 43 cm legs.
  • Cubes - diff
    cube Second cubes edge is 2 cm longer than the edge of the first cube. Volume difference blocks is 728 cm3. Calculate the sizes of the edges of the two dice.