In the triangle ABC is point D[1,-2,6], which is the center of the |BC| and point G[8,1,-3], which is the center of gravity of the triangle.

Find the coordinates of the vertex A[x,y,z].

Correct result:

x =  22
y =  7
z =  -21


AD:X=G+t(DG)  x=87t y=13t z=3+9t  AG:GD=2:1=>t=2 D...t=1 G...t=0 A...t=2  xA=22

We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!

Showing 0 comments:

Tips to related online calculators
For Basic calculations in analytic geometry is a helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

Next similar math problems:

  • Coordinates of a centroind
    triangle_234 Let’s A = [3, 2, 0], B = [1, -2, 4] and C = [1, 1, 1] be 3 points in space. Calculate the coordinates of the centroid of △ABC (the intersection of the medians).
  • Center of line segment
    stredna_priecka_1 Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is .
  • Center
    triangle_axis Calculate the coordinates of the center of gravity T [x, y] of triangle ABC; A[11,4] B[13,-7] C[-17,-18].
  • Sphere equation
    sphere2 Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
  • Isosceles triangle
    rr_triangle3 In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C.
  • Triangle IRT
    triangles_5 In isosceles right triangle ABC with right angle at vertex C is coordinates: A (-1, 2); C (-5, -2) Calculate the length of segment AB.
  • Coordinates
    geodet Determine the coordinates of the vertices and the content of the parallelogram, the two sides of which lie on the lines 8x + 3y + 1 = 0, 2x + y-1 = 0 and the diagonal on the line 3x + 2y + 3 = 0
  • Sphere from tree points
    sphere2_1 Equation of sphere with three point (a,0,0), (0, a,0), (0,0, a) and center lies on plane x+y+z=a
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Curve and line
    parabol The equation of a curve C is y=2x² -8x+9 and the equation of a line L is x+ y=3 (1) Find the x co-ordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C?
  • Chord BC
    tetiva2 A circle k has the center at the point S = [0; 0]. Point A = [40; 30] lies on the circle k. How long is the chord BC if the center P of this chord has the coordinates: [- 14; 0]?
  • Calculate 8
    axail_symmetry Calculate the coordinates of point B axially symmetrical with point A[-1, -3] along a straight line p : x + y - 2 = 0.
  • Find the 5
    distance-between-point-line Find the equation of the circle with center at (1,20), which touches the line 8x+5y-19=0
  • Coordinates hexagon
    hexagon The regular hexagon ABCDEF is given. Point A has coordinates [1; 3] and point D has coordinates [4; 7]. Calculate the sum of the coordinates of the center of its described circle.
  • Coordinates of square vertices
    ctverec_2 The ABCD square has the center S [−3, −2] and the vertex A [1, −3]. Find the coordinates of the other vertices of the square.
  • Right angled triangle 2
    vertex_triangle_right LMN is a right-angled triangle with vertices at L(1,3), M(3,5), and N(6,n). Given angle LMN is 90° find n
  • Find the 3
    segment_2 Find the distance and midpoint between A(1,2) and B(5,5).