# Spherical 63214

The gas tank consists of a 16m high cylinder with a diameter of 28m, which is closed at the top by a spherical canopy. The center of the spherical surface lies 4m below the bottom of the cylinder. Please calculate the spherical surface's radius and the canopy's height.

## Correct answer:

Tips for related online calculators

See also our right triangle calculator.

### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Inscribed circle

A circle is inscribed at the bottom wall of the cube with an edge (a = 1). What is the radius of the spherical surface that contains this circle and one of the vertex of the top cube base? - The roof

The roof has a spherical canopy with a base diameter of 8 m and a height of 2 m. Calculate the foil area with which the roof is covered when calculating 13% for waste and residues. - Hectoliters 39141

The children's pool has the shape of a cylinder with a bottom diameter of 6 m and a height of 60 cm. The water reaches one decimeter below the top of the pool. How many hectoliters of water is in the pool? - Dimensions: 27511

Calculate the surface of the paper cylinder (without lid) with dimensions: bottom radius: 7 cm, cylinder height: 22 cm.

- Water tank

What is the height of the cuboid-shaped tank with the bottom dimensions of 80 cm and 50 cm if the 480 liters of water reach 10 cm below the top? - Cylinder 5032

The tank has the shape of a rotating cylinder with a height of 10 m. The width of the level is 1 m, and the level is 20 cm below the top of the cylinder. How much diesel is in the tank? - Sphere - parts

Calculate the area of a spherical cap, which is part of an area with a base radius ρ = 10 cm and a height v = 3.4 cm.