Elevation angles

Two endpoints distant 240 m are inclined at an angle of 18°15'. The top of the mountain can be seen at elevation angles of 43° and 51° from its. How high is the mountain?

Correct answer:

h =  1174.9592 m

Step-by-step explanation:

a=240 m α=18+15/60=473=18.25  h1=a sin(α)=240 sin(18.25°)75.1593 m  cos α = x0 : a  x0=a cos(α)=240 cos(18.25°)227.9278 m  β=43  γ=51   tan β = (hh1) : (x0+x) tan γ = h: x   tan β = (x   tan γ h1):(x0+x)  (x0+x)   tan β = (x   tan γ h1) x0  tan β+x   tan β = x   tan γ  h1  x=tanγtanβh1+x0 tanβ=tan51° tan43° h1+x0 tan43° =tan51° tan43° 75.1593+227.9278 tan43° =1.2348970.93251575.1593+227.9278 0.932515=951.46321 m  h=x tanγ=x tan51° =951.4632 tan51° =951.4632 1.234897=1174.95922=1174.9592 m   Verifying Solution:  β1=π180°arctan(x0+xhh1)=π180°arctan(227.9278+951.46321174.959275.1593)=43  γ1=π180°arctan(h/x)=π180°arctan(1174.9592/951.4632)=51 

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
See also our right triangle calculator.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: