Children playground

The playground has a trapezoid shape, and the parallel sides have a length of 36 m and 21 m. The remaining two sides are 14 m long and 16 m long. Find the size of the inner trapezoid angles.

Correct answer:

A =  53.5764 °
B =  66.8676 °
C =  113.1324 °
D =  126.4236 °

Step-by-step explanation:

a=36 m c=21 m b=14 m d=16 m  x=ac=3621=15 m Δx,b,d  b2=x2+d22xdcosA  A=180πarccos(x2+d2b22 x d)=180πarccos(152+1621422 15 16)=53.5764=533435"
B=180πarccos(x2+b2d22 x b)=180πarccos(152+1421622 15 14)=66.8676=66523"
C=180B=18066.8676=113.1324=113757"
D=180A=18053.5764=126.4236=1262525"

Try calculation via our triangle calculator.




We will be pleased if You send us any improvements to this math problem. Thank you!



avatar




Tips to related online calculators
See also our right triangle calculator.
Cosine rule uses trigonometric SAS triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions:

  • Viewing angle
    zorny The observer sees a straight fence 60 m long at a viewing angle of 30°. It is 102 m away from one end of the enclosure. How far is the observer from the other end of the enclosure?
  • Trapezoid 25
    rr_lichobeznik Trapezoid PART with AR||PT has (angle P=x) and (angle A=2x) . In addition, PA = AR = RT = s. Find the length of the median of Trapezoid PART in terms of s.
  • Triangle from median
    triangles_1 Calculate the perimeter, content, and magnitudes of the triangle ABC's remaining angles, given: a = 8.4; β = 105° 35 '; and median ta = 12.5.
  • Area and two angles
    trig_1 Calculate the size of all sides and internal angles of a triangle ABC, if it is given by area S = 501.9; and two internal angles α = 15°28' and β = 45°.
  • The angle of view
    pole_1 Determine the angle of view at which the observer sees a rod 16 m long when it is 18 m from one end and 27 m from the other.
  • Inner angles
    triangle_1111 The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places.
  • Largest angle of the triangle
    obtuse_triangle Calculate the largest angle of the triangle whose sides have the sizes: 2a, 3/2a, 3a
  • ABCD
    trig_1 AC= 40cm , angle DAB=38 , angle DCB=58 , angle DBC=90 , DB is perpendicular on AC , find BD and AD
  • Four sides of trapezoid
    lichobeznik-stredni_pricka_3 In the trapezoid ABCD is |AB| = 73.6 mm; |BC| = 57 mm; |CD| = 60 mm; |AD| = 58.6 mm. Calculate the size of its interior angles.
  • Quadrilateral oblique prism
    kosyHranol What is the volume of a quadrilateral oblique prism with base edges of length a = 1m, b = 1.1m, c = 1.2m, d = 0.7m, if a side edge of length h = 3.9m has a deviation from the base of 20° 35' and the edges a, b form an angle of 50.5°.
  • Right triangle trigonometrics
    triangle2 Calculate the size of the remaining sides and angles of a right triangle ABC if it is given: b = 10 cm; c = 20 cm; angle alpha = 60° and the angle beta = 30° (use the Pythagorean theorem and functions sine, cosine, tangent, cotangent)
  • Triangle's centroid
    triangles_1 In the triangle ABC the given lengths of its medians tc = 9, ta = 6. Let T be the intersection of the medians (triangle's centroid) and point is S the center of the side BC. The magnitude of the CTS angle is 60°. Calculate the length of the BC side to 2 d
  • Roof angle
    rr_triangle3 The roof of the house has the shape of an isosceles triangle with arms 4 m long and the size of the base 6 m. How big an angle alpha does its roof make?
  • Angles by cosine law
    357_triangle Calculate the size of the angles of the triangle ABC, if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem).
  • A rhombus
    rhombus-diagonals2 A rhombus has sides of length 10 cm, and the angle between two adjacent sides is 76 degrees. Find the length of the longer diagonal of the rhombus.
  • Mast shadow
    horizons Mast has 13 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 15°. Determine the height of the mast, if the sun above the horizon is at angle 33°. Use the law of sines.
  • Water channel
    trapezium_prism_2 The cross section of the water channel is a trapezoid. The width of the bottom is 19.7 m, the water surface width is 28.5 m, the side walls have a slope of 67°30' and 61°15'. Calculate how much water flows through the channel in 5 minutes if the water flo