Hyperbola equation

Find the hyperbola equation with the center of S [0; 0], passing through the points:
A [5; 3] B [8; -10]

Result

f = (Correct answer is: f = 7 * x^2 - 3y^2 = 148) Wrong answer

Solution:

(xx0)2a2(yy0)2b2=1  x2a2y2b2=1  52/a232/b2=1 82/a2(10)2/b2=1  25/a2=1+9/b2 a2=25/(1+9/b2)  64/25 (1+9/b2)100/b2=1  64/25(b2+9)100=b2  64/25 (b2+9)100=b2 1.56b276.96=0  p=1.56;q=0;r=76.96 D=q24pr=0241.56(76.96)=480.2304 D>0  b1,2=q±D2p=±480.233.12 b1,2=±7.02376916857 b1=7.02376916857 b2=7.02376916857   Factored form of the equation:  1.56(b7.02376916857)(b+7.02376916857)=0  b=b1=7.02387.0238   a=25/(1+9/b2)=25/(1+9/7.02382)4.5981  x2/(148/7)y2/(148/3)=1  f=7 x23y2=148\dfrac{ (x-x_{0})^2 }{ a^2 } - \dfrac{ (y-y_{0})^2 }{ b^2 }=1 \ \\ \ \\ \dfrac{ x^2 }{ a^2 } - \dfrac{ y^2 }{ b^2 }=1 \ \\ \ \\ 5^2/a^2 - 3^2/b^2=1 \ \\ 8^2/a^2 - (-10)^2/b^2=1 \ \\ \ \\ 25/a^2=1 +9/b^2 \ \\ a^2=25 / (1 +9/b^2) \ \\ \ \\ 64/25 \cdot \ (1 + 9/b^2) - 100/b^2=1 \ \\ \ \\ 64/25*(b^2 + 9) - 100=b^2 \ \\ \ \\ 64/25 \cdot \ (b^2 + 9) - 100=b^2 \ \\ 1.56b^2 -76.96=0 \ \\ \ \\ p=1.56; q=0; r=-76.96 \ \\ D=q^2 - 4pr=0^2 - 4\cdot 1.56 \cdot (-76.96)=480.2304 \ \\ D>0 \ \\ \ \\ b_{1,2}=\dfrac{ -q \pm \sqrt{ D } }{ 2p }=\dfrac{ \pm \sqrt{ 480.23 } }{ 3.12 } \ \\ b_{1,2}=\pm 7.02376916857 \ \\ b_{1}=7.02376916857 \ \\ b_{2}=-7.02376916857 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ 1.56 (b -7.02376916857) (b +7.02376916857)=0 \ \\ \ \\ b=b_{1}=7.0238 \doteq 7.0238 \ \\ \ \\ \ \\ a=\sqrt{ 25/(1+9/b^2) }=\sqrt{ 25/(1+9/7.0238^2) } \doteq 4.5981 \ \\ \ \\ x^2/(148/7)- y^2/(148/3)=1 \ \\ \ \\ f=7 \cdot \ x^2 - 3y^2=148



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

 
We encourage you to watch this tutorial video on this math problem: video1

Next similar math problems:

  1. Hyperbola
    hyperbola Find the equation of hyperbola that passes through the point M [30; 24] and has focal points at F1 [0; 4 sqrt 6], F2 [0; -4 sqrt 6].
  2. Equation - inverse
    hyperbola_3 Solve for x: 7: x = 14: 1000