Right-angled - legs
The lengths of legs are a = 7.2 cm and b = 10.4 cm in the right-angled triangle ABC. Calculate:
a) lengths of the sections of the hypotenuse
b) height to the hypotenuse c
a) lengths of the sections of the hypotenuse
b) height to the hypotenuse c
Final Answer:

Tips for related online calculators
See also our right triangle calculator.
Do you want to convert time units like minutes to seconds?
See also our trigonometric triangle calculator.
Do you want to convert time units like minutes to seconds?
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
arithmeticplanimetricsUnits of physical quantitiesGrade of the word problem
Related math problems and questions:
- Right-angled 81019
In the right-angled triangle ABC (AB is the hypotenuse), a : b = 24 : 7, and the height to the side c = 12.6 cm applies. Calculate the lengths of the sides of triangle ABC.
- Right triangle - legs
Calculate the area of a right-angled triangle ABC with a=15 cm, b=1.7 dm.
- Hypotenuse 72524
We know the height of the hypotenuse h = 4cm and the hypotenuse c = 19cm in a right triangle. How to calculate the segments of legs - sections on the hypotenuse c1, c2
- Perpendicular projections
In a right-angled triangle, the perpendicular projections of the legs on the hypotenuse have lengths of 3.1 cm and 6.3 cm. Calculate the perimeter of this triangle. Round the result to the nearest hundredth of a centimeter.
- Right triangle - ratio
The lengths of the legs of the right triangle ABC are in ratio b = 2:3. The hypotenuse is 10 cm long. Calculate the lengths of the legs of that triangle.
- PT - Pythagorean
A right triangle ABC has hypotenuse c and legs a, and b of the following lengths. Estimate the length of its remaining side and compare your estimates with your calculations. a) a = 4 cm; b = 5 cm b) a = 6.8 m; b = 9 m c) a= 8.9 m; b = 1 m d) b= 10 cm; c
- Right triangle ABC
Calculate the perimeter and area of a right triangle ABC. If you know the length of the legs, 4 cm, 5.5 cm, and 6.8 cm are the hypotenuse.