An isosceles triangle
An altitude is drawn from the vertex of an isosceles triangle, forming a right angle and two congruent triangles. As a result, the altitude cuts the base into two equal segments. The length of the altitude is 18 inches, and the length of the base is 15 inches. Find the triangle's perimeter. Round to the nearest tenth of an inch.
Correct answer:

Tips for related online calculators
See also our right triangle calculator.
Calculation of an isosceles triangle.
See also our trigonometric triangle calculator.
Calculation of an isosceles triangle.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
arithmeticplanimetricsGrade of the word problem
Related math problems and questions:
- Right isosceles triangle
The right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse, dividing it into two equal segments. One segment is 5 cm long. What is the area of the triangle?
- Right 24
The right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse, dividing it into two unequal segments. One segment is 5 cm long. What is the area of the triangle? Thank you.
- Nonagon
Calculate the area and perimeter of a regular nonagon if its radius of the inscribed circle is r = 10cm.
- Perpendicular projections
In a right-angled triangle, the perpendicular projections of the legs on the hypotenuse have lengths of 3.1 cm and 6.3 cm. Calculate the perimeter of this triangle. Round the result to the nearest hundredth of a centimeter.
- Maturitný - RR - base
In an isosceles triangle ABC with base AB, ∠BAC = 20°, AB = 4. The axis of the interior angle at vertex B intersects side AC at point P. Calculate the length of the segment AP. Give the result to two decimal places.
- Isosceles
A flower bed has the shape of an isosceles triangle with a base of 25m and sides of 30m. Calculate the maximum number of flowers that can be planted in this bed, assuming that one flower requires about 8 dm² of square area. Round the result to the nearest
- Isosceles 6673
Isosceles triangle X'Y'Z' . It is similar to triangle XYZ. The base of triangle XYZ has length |XY|=4cm. The size of the angle at the X vertex is 45 degrees. Draw a triangle X'Y'Z' whose base is 8 cm long.