Central angle

A circle k with a center at point S and a radius of 6 cm is given. Calculate the size of the central angle subtended by a chord 10 cm long.

Correct answer:

α =  112.8854 °

Step-by-step explanation:

r=6 cm t=10 cm  sin α/2 = t/2 : r  s=2 rt=2 610=650.8333  A=arcsins=arcsin0.83330.9851 rad A2=2 A=2 0.98511.9702 rad  α=A2  °=A2 π180   °=1.9702 π180   °=112.885  °=112.8854=112°537"

Try calculation via our triangle calculator.




Did you find an error or inaccuracy? Feel free to write us. Thank you!



Showing 1 comment:
Dr. Math
1. Use the chord length formula:  
  The length L of a chord subtending a central angle θ (in radians) in a circle of radius r is:  
 
  L = 2r sin(θ2)
 
 
  Plugging in L = 10 cm and r = 6 cm:  
 
  10 = 2 × 6 × sin(θ2) ⇒ sin(θ2) = 1012 = 56.
 


2. Solve for θ :  
 
  θ2 = arcsin(56) ⇒ θ = 2 arcsin(56).
 
 
  In degrees:  
 
  θ ≈ 2 × 56.44° ≈ 112.89°.
 





Tips for related online calculators
Do you want to convert time units like minutes to seconds?
See also our right triangle calculator.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.

You need to know the following knowledge to solve this word math problem:

geometryalgebraplanimetricsgoniometry and trigonometryUnits of physical quantitiesGrade of the word problem

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: