# Surface area + Pythagorean theorem - math problems

- Quadrilateral pyramid

Calculate the surface of a quadrilateral pyramid, which has a rectangular base with dimensions a = 8 cm, b = 6 cm and height H = 10 cm. - Triangular prism

Calculate the surface of a regular triangular prism, the edges of the base are 6 cm long and the height of the prism is 15 cm. - Cone roof

How many m^{2}of roofing is needed to cover a cone-shaped roof with a diameter of 10 m and a height of 4 m? Add an extra 4% to the overlays. - Triangular prism - regular

The regular triangular prism is 7 cm high. Its base is an equilateral triangle whose height is 3 cm. Calculate the surface and volume of this prism. - Triangular prism

The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism. - Block or cuboid

The wall diagonals of the block have sizes of √29cm, √34cm, √13cm. Calculate the surface and volume of the block. - Triangular prism,

The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm^{3}(l). - Three faces of a cuboid

The diagonal of three faces of a cuboid are 13,√281 and 20 units. Then the total surface area of the cuboid is. - Top of the tower

The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joint - Storm and roof

The roof on the building is a cone with a height of 3 meters and a radius equal to half the height of the roof. How many m^{2}of roof need to be repaired if 20% were damaged in a storm? - Hexagonal pyramid

Calculate the surface area of a regular hexagonal pyramid with a base inscribed in a circle with a radius of 8 cm and a height of 20 cm. - The bus stop

The bus stop waiting room has the shape of a regular quadrilateral pyramid 4 m high with a 5 m base edge. Calculate how many m^{2}roofing is required to cover the three walls of the sheathing, taking into account 40% of the additional coverage. - Rectangular base pyramid

Calculate an area of the shell of the pyramid with a rectangular base of 2.8 m and 1.4 m and height 2.5 meters. - The quadrilateral pyramid

The quadrilateral pyramid has a rectangular base of 24 cm x 3.2dm and a body height of 0.4m. Calculate its volume and surface area. - Axial section of the cone

The axial section of the cone is an isosceles triangle in which the ratio of cone diameter to cone side is 2: 3. Calculate its volume if you know its area is 314 cm square. - Cone side

Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side. - The Indian tent

The Indian tent is cone-shaped. Its height is 3.5 m. The diameter of the base is 2.5 m. How much canvas is needed to make a tire? - Tetrahedral pyramid

Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´. - Hexagon

Calculate the surface of a regular hexagonal prism whose base edge a = 12cm and side edge b = 3 dm. - A concrete pedestal

A concrete pedestal has a shape of a right circular cone having a height of 2.5 feet. The diameter of the upper and lower bases are 3 feet and 5 feet, respectively. Determine the lateral surface area, total surface area, and the volume of the pedestal.

Do you have an interesting mathematical word problem that you can't solve it? Submit math problem, and we can try to solve it.

Pythagorean theorem is the base for the right triangle calculator.