Fraction calculator



This calculator adds two fractions. When fractions have the same denominators calculator simply adds the numerators and place the result over the common denominator. Then simplify the result to the lowest terms or a mixed number.

The result:

1/6 + 3/6 = 2/30.6666667

The spelled result in words is two thirds.

How do we solve fractions step by step?

  1. Add: 1/6 + 3/6 = 1 + 3/6 = 4/6 = 2 · 2/2 · 3 = 2/3
    It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(6, 6) = 6. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 6 × 6 = 36. In the following intermediate step, cancel by a common factor of 2 gives 2/3.
    In other words - one sixth plus three sixths is two thirds.

Rules for expressions with fractions:

Fractions - use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.

Mixed numerals (mixed numbers or fractions) keep one space between the integer and
fraction and use a forward slash to input fractions i.e., 1 2/3 . An example of a negative mixed fraction: -5 1/2.
Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal point . and they are automatically converted to fractions - i.e. 1.45.


Math Symbols


SymbolSymbol nameSymbol MeaningExample
+plus signaddition 1/2 + 1/3
-minus signsubtraction 1 1/2 - 2/3
*asteriskmultiplication 2/3 * 3/4
×times signmultiplication 2/3 × 5/6
:division signdivision 1/2 : 3
/division slashdivision 1/3 / 5
:coloncomplex fraction 1/2 : 1/3
^caretexponentiation / power 1/4^3
()parenthesescalculate expression inside first-3/5 - (-1/4)

The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.


Last Modified: October 9, 2024