# Fraction calculator

This fractions calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.

## The result:

### 1 1/3 - 2/3 = 2/3 ≅ 0.6666667

The spelled result in words is two thirds.### How do we solve fractions step by step?

- Conversion a mixed number 1 1/3 to a improper fraction: 1 1/3 = 1 1/3 = 1 · 3 + 1/3 = 3 + 1/3 = 4/3

To find a new numerator:

a) Multiply the whole number 1 by the denominator 3. Whole number 1 equally 1 * 3/3 = 3/3

b) Add the answer from the previous step 3 to the numerator 1. New numerator is 3 + 1 = 4

c) Write a previous answer (new numerator 4) over the denominator 3.

One and one third is four thirds. - Subtract: 4/3 - 2/3 = 4 - 2/3 = 2/3

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 3) = 3. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 3 = 9. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - four thirds minus two thirds is two thirds.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3 ^ 2

• cube of a fraction: 2/3 ^ 3

• exponentiation of a fraction: 1/2 ^ 4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• square root of a fraction: sqrt(1/16)

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5÷2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- Chocolates left

What is the equation for Mark? He had 84 boxes of candy to sell, half of which were dark chocolate and the other half white chocolate. He sold 75% of dark chocolate and 40% white. How many did you have left over? - Three cakes

There are three cakes an ice cream cake, chocolate, and a sponge cake. We ate 3/4 of the ice cream cake. We cut the chocolate cake into twelve equal pieces, of which We ate nine. The sponge cake was divided into eight equal pieces, with only one remaining - The sum 42

The sum of two fractions is 6 5/6. If the bigger fraction is subtracted by 3/4, the difference is 4 7/12. What is the smaller fraction? - Members 82412

There are 12 girls in the circle. Girls make up 2/3 of all members. How many boys are there in the circle?

- Bola spend

Bola spends 7 1/2 hours on his first journey and 13 3/5 hours on his second trip. How much longer did he spend on the second trip than the first one? - Construction 80124

The father offered to work on the construction site for 50 hours as part of a voluntary event. How many hours does he have left after he worked on the construction site for 9 days at 3 and 1 half hours? - A pole

1/8 of a pole is in mud, 1/3 of it in water, and the rest above water. If the length of the pole is 72 meters, find the length of the pole above the water.

more math problems »

Last Modified: September 8, 2024