# Fraction calculator

This fractions calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.

## The result:

### 1 2/5 - 3/4 = 13/20 = 0.65

The spelled result in words is thirteen twentieths.### How do we solve fractions step by step?

- Conversion a mixed number 1 2/5 to a improper fraction: 1 2/5 = 1 2/5 = 1 · 5 + 2/5 = 5 + 2/5 = 7/5

To find a new numerator:

a) Multiply the whole number 1 by the denominator 5. Whole number 1 equally 1 * 5/5 = 5/5

b) Add the answer from the previous step 5 to the numerator 2. New numerator is 5 + 2 = 7

c) Write a previous answer (new numerator 7) over the denominator 5.

One and two fifths is seven fifths. - Subtract: 7/5 - 3/4 = 7 · 4/5 · 4 - 3 · 5/4 · 5 = 28/20 - 15/20 = 28 - 15/20 = 13/20

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(5, 4) = 20. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 5 × 4 = 20. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - seven fifths minus three quarters is thirteen twentieths.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3 ^ 2

• cube of a fraction: 2/3 ^ 3

• exponentiation of a fraction: 1/2 ^ 4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• square root of a fraction: sqrt(1/16)

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5÷2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- A cake

A cake has 46 slices. Harry ate 16 slices, and Jack ate 26 slices, Dave ate 0 & Mary ate 1 slice. What fraction of the cake is remaining? - The entity

What is the difference between seven-tenths of an entity and seven-fifteenths of the same entity? Please solve it for me. - Saturday 5405

Of all Ferko's tasks, he worked out 1/8 on Friday and 3/8 on Saturday and Sunday. What part of the task did he have to work on Sunday? - A craft

A craft store has a 9-yard spool of ribbon. In the morning, a customer buys 1/5 yd of ribbon. Another customer buys 7/10 yd of ribbon in the afternoon from the spool. How much ribbon is left?

- Subtract mixed 2

Subtract mixed numbers: 3 1/2 - 2 4/5 (3 and one half - 2 and four-fifths.) Remember you need to make these into improper fractions before subtracting. - Three gifts

Jon had 20 dollars to spend on three gifts. He spent 9 9/10 dollars on gift A and 4 3/5 dollars on gift B. How much money did he have left for gift C? - One-quarter 2484

Mom baked a bowl of cookies. The son took two-fifths of the cookies, the daughter one-quarter of the rest of the cookies. What part was left to the parents?

more math problems »

Last Modified: September 8, 2024