# Fraction calculator

This fraction calculator performs basic and advanced fraction operations, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. The calculator helps in finding value from multiple fractions operations. Solve problems with two, three, or more fractions and numbers in one expression.

## The result:

### 3 1/2 * 1 3/4 = 49/8 = 6 1/8 = 6.125

Spelled result in words is forty-nine eighths (or six and one eighth).### How do we solve fractions step by step?

- Conversion a mixed number 3 1/2 to a improper fraction: 3 1/2 = 3 1/2 = 3 · 2 + 1/2 = 6 + 1/2 = 7/2

To find a new numerator:

a) Multiply the whole number 3 by the denominator 2. Whole number 3 equally 3 * 2/2 = 6/2

b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7

c) Write a previous answer (new numerator 7) over the denominator 2.

Three and one half is seven halfs. - Conversion a mixed number 1 3/4 to a improper fraction: 1 3/4 = 1 3/4 = 1 · 4 + 3/4 = 4 + 3/4 = 7/4

To find a new numerator:

a) Multiply the whole number 1 by the denominator 4. Whole number 1 equally 1 * 4/4 = 4/4

b) Add the answer from the previous step 4 to the numerator 3. New numerator is 4 + 3 = 7

c) Write a previous answer (new numerator 7) over the denominator 4.

One and three quarters is seven quarters. - Multiple: 7/2 * 7/4 = 7 · 7/2 · 4 = 49/8

Multiply both numerators and denominators. Result fraction keep to lowest possible denominator GCD(49, 8) = 1. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - seven halfs multiplied by seven quarters is forty-nine eighths.

#### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3^2

• cube of a fraction: 2/3^3

• exponentiation of a fraction: 1/2^4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) : 4/22 - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must evaluate from left to right.

## Fractions in word problems:

- Compare two fractions

Find which is the larger of the two fractions: 11/32, 7/24, by expressing the numbers as a) fractions with the same denominator, b) decimals. - Daniel

Daniel ate 4/5 of his pizza, and Shawn ate 5/6 of his pizza. Who ate more? - Rhea answered

Rhea answered 5/11 of the questions correctly, and Precious answered 7/11 of them correctly. Who got the higher score if each problem is worth the same amount? - Which 14

Which set of rational numbers is arranged from least to greatest? A) -3.5, negative 1 over 4, 2, 1 over 3 B) -3.5, negative 1 over 4, 1 over 3, 2 C) 2, 1 over 3, negative 1 over 4, -3.5 D) negative 1 over 4, 1 over 3, 2, -3.5 - Anesa

Anesa ate 3/4 of her pizza, and Eman ate 1/4 of her pizza. Who ate the greater part of the pizza? - Three friends

You and your friends are playing basketball. You make 7 out of 15 shots. Your first friend makes 6 out of 10 shots and your second friend makes 5 out of 12 shots. Who is the better shooter (write a, b, c)? How would you solve the problem using what you kn - Playing games

In a school, 9/10 of the students take part. 2/3 of these play football. What fraction of the students play football? - The sum

If you add 3/4 and 5/8, what would be the sum? A.more than one B.equal to one C.less than one D. zero - The cost 7

The cost of a pen is Rs. 20/3, and that of a pencil is 25/6. Which costs more and by how much? - The fuel

The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using - Equivalent fractions

Are these two fractions -4/9 and 11/15 equivalent? - One quarter

Which of the following has a sum of 3/4? A. 1/2+1/4 B. 1/2+1/3 C. 1/4+1/8 D. 1/9+1/12 - A laundry

Mr. Green washed 1/4 of his laundry. His son washed 3/7 of it. Who washed most of the laundry? How much of the laundry still needs to be washed? - A student 4

A student knows that ¾ x 4 is the same as 4 x ¾ The student assumes that 4 ÷ ¾ is the same as ¾ ÷ 4 Is the student correct? - Same fractions

I remember that 2/2 is equal to 1. 3/3 is equal to 1. Where is the fraction 4/4 located on the number line?

more math problems »