# Fraction calculator

This fractions calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.

## The result:

### 3 2/3 + 2 1/7 = 122/21 = 5 17/21 ≅ 5.8095238

The spelled result in words is one hundred twenty-two twenty-firsts (or five and seventeen twenty-firsts).### How do we solve fractions step by step?

- Conversion a mixed number 3 2/3 to a improper fraction: 3 2/3 = 3 2/3 = 3 · 3 + 2/3 = 9 + 2/3 = 11/3

To find a new numerator:

a) Multiply the whole number 3 by the denominator 3. Whole number 3 equally 3 * 3/3 = 9/3

b) Add the answer from the previous step 9 to the numerator 2. New numerator is 9 + 2 = 11

c) Write a previous answer (new numerator 11) over the denominator 3.

Three and two thirds is eleven thirds. - Conversion a mixed number 2 1/7 to a improper fraction: 2 1/7 = 2 1/7 = 2 · 7 + 1/7 = 14 + 1/7 = 15/7

To find a new numerator:

a) Multiply the whole number 2 by the denominator 7. Whole number 2 equally 2 * 7/7 = 14/7

b) Add the answer from the previous step 14 to the numerator 1. New numerator is 14 + 1 = 15

c) Write a previous answer (new numerator 15) over the denominator 7.

Two and one seventh is fifteen sevenths. - Add: 11/3 + 15/7 = 11 · 7/3 · 7 + 15 · 3/7 · 3 = 77/21 + 45/21 = 77 + 45/21 = 122/21

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 7) = 21. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 7 = 21. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - eleven thirds plus fifteen sevenths is one hundred twenty-two twenty-firsts.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3 ^ 2

• cube of a fraction: 2/3 ^ 3

• exponentiation of a fraction: 1/2 ^ 4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• square root of a fraction: sqrt(1/16)

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5÷2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- A cake 2

Karen sliced a cake into 10 slices. She ate 2/10 of it and after some time she ate another 4/10 of it. How much of the cake did Karen eat? - Hardware store

At the hardware store, 1/4 of the nails are size 2d, and 3/8 of the nails are size 4d. What fraction of the nails are either size 2d or 4d? - Party pizza

At a party, there were some pizzas of the same size. Amelia ate 1/3 of a pizza. Chris ate 1/3 of a pizza. Miguel ate 5/12 of a pizza. How many pizzas did the three children eat? - Samuel

Samuel has 1/3 of a bag of rice, and Isabella has a 1/2 bag of rice. What fraction of our bag of rice do they have altogether?

- Numbers 5256

What is 4/5 of the sum of numbers (-4.95) and (-11.05)? - Sum of the fractions

Find the sum, express your answer to lowest terms. 1. 1/4 + 2/4= 2. 1/6 + 3/6= 3. 6/10 + 2/10= 4. ¾ + ⅛= 5. 5 3/5 + 2 ½= - The bucket

Anna and Joey share an 18-ounce bucket of clay. By the end of the week, Anna has used 1/3 of the bucket, and Joey has used 2/3 of the bucket of clay. How many ounces are left in the bucket?

more math problems »

Last Modified: September 8, 2024