Fraction calculator
This calculator subtracts two fractions. When fractions have the same denominators calculator simply subtracts the numerators and place the result over the common denominator. Then simplify the result to the lowest terms or a mixed number.
The result:
5/8 - 1/8 = 1/2 = 0.5
The result spelled out in words is one half.How do we solve fractions step by step?
- Subtract: 5/8 - 1/8 = 5 - 1/8 = 4/8 = 4 · 1/4 · 2 = 1/2
Both fractions have the same denominator, which is then the common denominator in the subtracting them. In the following intermediate step, cancel by a common factor of 4 gives 1/2.
In other words, five eighths minus one eighth equals one half.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: (){}), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., + and -, or * and /) must be evaluated from left to right.
Fractions in word problems:
- Compare ratios
Is ratios 4:7 and 16:19 equivalent?
- David 4
David made 4/3 of a quart of fruit juice. Each mug he has holds 1/3 of a quart. How many mugs will David be able to fill?
- Integer add to fraction
Seven is added to the sum of 4/5 and 6/7
- Well-known 10731
The well-known Candle Collector, Antonín, had half of the blue candles in his collection, a third of the candles with a colored motif, and 128 green candles. How many candles does Antonín have in his collection?
- Equation 20
In the given equation: 8/9-4/5=2/9+x, find x
- Two numbers at a ratio
If 1.5x = 0.04y, then find the value of {(y - x)/(y + x)}.
- 6 cups of strawberries
Mr. Hunter decided to make a healthy snack for the 20 students in his class. He gave each student a dish of yogurt and divided 6 cups of strawberries equally among the dishes. How many cups of strawberries did each student get in their yogurt? Write your
more math problems »
Last Modified: August 28, 2025