# Fraction calculator

This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step informations.

## The result:

### 8 1/4 - 3 2/5 - (2 1/3 - 1/4) = 83/30 = 2 23/30 ≅ 2.7666667

The spelled result in words is eighty-three thirtieths (or two and twenty-three thirtieths).### How do we solve fractions step by step?

- Conversion a mixed number 8 1/4 to a improper fraction: 8 1/4 = 8 1/4 = 8 · 4 + 1/4 = 32 + 1/4 = 33/4

To find a new numerator:

a) Multiply the whole number 8 by the denominator 4. Whole number 8 equally 8 * 4/4 = 32/4

b) Add the answer from the previous step 32 to the numerator 1. New numerator is 32 + 1 = 33

c) Write a previous answer (new numerator 33) over the denominator 4.

Eight and one quarter is thirty-three quarters. - Conversion a mixed number 3 2/5 to a improper fraction: 3 2/5 = 3 2/5 = 3 · 5 + 2/5 = 15 + 2/5 = 17/5

To find a new numerator:

a) Multiply the whole number 3 by the denominator 5. Whole number 3 equally 3 * 5/5 = 15/5

b) Add the answer from the previous step 15 to the numerator 2. New numerator is 15 + 2 = 17

c) Write a previous answer (new numerator 17) over the denominator 5.

Three and two fifths is seventeen fifths. - Subtract: 33/4 - 17/5 = 33 · 5/4 · 5 - 17 · 4/5 · 4 = 165/20 - 68/20 = 165 - 68/20 = 97/20

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(4, 5) = 20. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 4 × 5 = 20. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - thirty-three quarters minus seventeen fifths is ninety-seven twentieths. - Conversion a mixed number 2 1/3 to a improper fraction: 2 1/3 = 2 1/3 = 2 · 3 + 1/3 = 6 + 1/3 = 7/3

To find a new numerator:

a) Multiply the whole number 2 by the denominator 3. Whole number 2 equally 2 * 3/3 = 6/3

b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7

c) Write a previous answer (new numerator 7) over the denominator 3.

Two and one third is seven thirds. - Subtract: 7/3 - 1/4 = 7 · 4/3 · 4 - 1 · 3/4 · 3 = 28/12 - 3/12 = 28 - 3/12 = 25/12

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 4) = 12. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 4 = 12. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - seven thirds minus one quarter is twenty-five twelfths. - Subtract: the result of step No. 3 - the result of step No. 5 = 97/20 - 25/12 = 97 · 3/20 · 3 - 25 · 5/12 · 5 = 291/60 - 125/60 = 291 - 125/60 = 166/60 = 2 · 83/2 · 30 = 83/30

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(20, 12) = 60. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 20 × 12 = 240. In the following intermediate step, cancel by a common factor of 2 gives 83/30.

In other words - ninety-seven twentieths minus twenty-five twelfths is eighty-three thirtieths.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3 ^ 2

• cube of a fraction: 2/3 ^ 3

• exponentiation of a fraction: 1/2 ^ 4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• square root of a fraction: sqrt(1/16)

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5÷2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- Attending school

Huang lives 1/4 of a mile from school, while Lily lives 2/3 of a mile from school. How much further does Lily live from school than Huang? - Miguel 2

Miguel had 5/6 of a pizza, and Chris had 1 and 5/8 of a similar pizza. How much more pizza did Chris have than Miguel? - Mother 16

Mother cooks food in 1 3/4 hours and prepares the children's snack in 4/6 of an hour. How much longer does she cook the food than prepare the children's snacks? - Rice cooking

Aunt had 1 3/4 kg of rice, then Aunt bought another 2 1/2 kg of rice, cooked 0.2 kg, calculate the remaining rice Aunt now.

- Two pieces 2

Two pieces of length 12/5 m and 23/9 m are cut from a rope of length 13 m. Find the length of the remaining rope. - Xero had

Xero had a piece of ribbon. He used 0.4 of it to tie 2 small boxes and 2 large boxes. The length of ribbon needed for a large box is 3 times the length of ribbon needed for a small box. Xero used 5/6 of the remaining ribbon to decorate the presents. a) Wh - A cake

A cake has 46 slices. Harry ate 16 slices, and Jack ate 26 slices, Dave ate 0 & Mary ate 1 slice. What fraction of the cake is remaining?

more math problems »

Last Modified: August 30, 2024