# Hollow sphere

The volume of the hollow ball is 3432 cm

^{3.}What is its internal radius when the wall thickness is 3 cm?**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Hollow sphere

Steel hollow sphere floats on the water plunged into half its volume. Determine the outer radius of the sphere and wall thickness, if you know that the weight of the sphere is 0.5 kg and density of steel is 7850 kg/m^{3} - Balls

Three metal balls with volumes V_{1}=71 cm^{3}V_{2}=78 cm^{3}and V_{3}=64 cm^{3}melted into one ball. Determine it's surface area. - Balls

Ping pong balls have a diameter of approximately 4.6 cm. They are sold in boxes of 4 pieces: each box has the shape of a cuboid with a square base. The balls touch the walls of the box. Calculate what portion of the internal volume of the box is filled w - Two balls

Two balls, one 8cm in radius and the other 6cm in radius, are placed in a cylindrical plastic container 10cm in radius. Find the volume of water necessary to cover them. - Spherical cap

From the sphere of radius 18 was truncated spherical cap. Its height is 12. What part of the volume is spherical cap from whole sphere? - Sphere and cone

Within the sphere of radius G = 36 cm inscribe cone with largest volume. What is that volume and what are the dimensions of the cone? - Cube, cuboid, and sphere

Volumes of a cube and a cuboid are in ratio 3: 2. Volumes of sphere and cuboid are in ratio 1: 3. In what ratio are the volumes of cube, cuboid, and sphere? - Sphere in cone

A sphere of radius 3 cm desribe cone with minimum volume. Determine cone dimensions. - Spherical segment

Spherical segment with height h=6 has a volume V=134. Calculate the radius of the sphere of which is cut this segment. - Sphere slices

Calculate volume and surface of a sphere, if the radii of parallel cuts r_{1}=31 cm, r_{2}=92 cm and its distance v=25 cm. - Cube in a sphere

The cube is inscribed in a sphere with volume 5951 cm^{3.}Determine the length of the edges of a cube. - Cubes

One cube is inscribed sphere and the other one described. Calculate difference of volumes of cubes, if the difference of surfaces in 254 cm^{2.} - Elevation

What must be the elevation of an observer in order that he may be able to see an object on the earth 782 km away? Assume the earth to be a smooth sphere with radius 6378.1 km. - Felix

Calculate how much land saw Felix Baumgartner after jump from 32 km above ground. The radius of the Earth is R = 6378 km. - Rotation of the Earth

Calculate the circumferential speed of the Earth's surface at a latitude of 61°. Consider a globe with a radius of 6378 km. - Horizon

The top of a lighthouse is 17 m above the sea. How far away is an object which is just “on the horizon”? [Assume the earth is a sphere of radius 6378.1 km.] - Sphere - parts

Calculate the area of a spherical cap, which is part of an area with base radius ρ = 9 cm and a height v = 3.1 cm.