Body volume + area of shape - examples

  1. Regular triangular pyramid
    3sidespyramid_1 Calculate the volume and surface area of the regular triangular pyramid and the height of the pyramid is 12 centimeters, the bottom edge has 4 centimeters and the height of the side wall is 12 centimeters
  2. Cube cut
    cut_cube In the ABCDA'B'C'D'cube, it is guided by the edge of the CC' a plane witch dividing the cube into two perpendicular four-sided and triangular prisms, whose volumes are 3:2. Determine in which ratio the edge AB is divided by this plane.
  3. Iron density
    pipe1_2 Calculate the weight of a 2 m long rail pipe with an internal diameter of 10 cm and a wall thickness of 3 mm. The iron density is p = 7.8 g/cm3.
  4. Tereza
    cube The cube has area of base 225 mm2. Calculate the edge length, volume and area of its surface.
  5. Cylinders
    cylinders Area of the side of two cylinders is same rectangle of 50 cm × 11 cm. Which cylinder has a larger volume and by how much?
  6. Rainfall
    storm Annual rainfall in our country are an average of 797 mm. How many m3 of water rains on average per hectare?
  7. Circular pool
    arc_open The base of pool is circle with a radius r = 10 m excluding circular segment that determines chord length 10 meters. Pool depth is h = 2m. How many hectoliters of water can fit into the pool?
  8. Tetrahedral pyramid
    jehlan_1 Calculate the volume and surface area of a regular tetrahedral pyramid, its height is $b cm and the length of the edges of the base is 6 cm.
  9. The pot
    hrniec The pot is in 1/3 filled with water. Bottom of the pot has an area of ​​329 cm2. How many centimeters rises water level in the pot after add 1.2 liters of water?
  10. Pool
    bazen Mr. Peter build a pool shape of a four-sided prism with rhombus base in the garden. Base edge length is 8 m, distance of the opposite walls of the pool is 7 m. Estimated depth is 144 cm. How many hectoliters of water consume Mr. Peter to fill the pool?
  11. Road embankment
    nasyp_cesta Road embankment has a cross section shape of an isosceles trapezoid with bases 5 m and 7 m, and 2 m long leg. How many cubic meters of soil is in embankment length of 1474 meters?
  12. Prism
    prism_rhombus_1 Calculate the volume of the rhombic prism. Base of prism is rhombus whose one diagonal is 47 cm and the edge of the base is 28 cm. The edge length of the base of the prism and height is 3:5.
  13. Tetrahedral pyramid
    pyramid_4s Calculate the volume and surface of the regular tetrahedral pyramid if content area of the base is 20 cm2 and deviation angle of the side edges from the plane of the base is 60 degrees.
  14. Prism
    prism_rhombus_2 The base of the prism is a rhombus with a side 30 cm and height 27 cm. The height of the prism is 180% longer than the side length of the rhombus. Calculate the volume of the prism.
  15. Mystery of stereometrie
    Tetrahedron Two regular tetrahedrons have surfaces 88 cm2 and 198 cm2. In what ratio is their volumes? Write as a fraction and as a decimal rounded to 4 decimal places.
  16. Hexagonal prism
    hexa_prism The base of the prism is a regular hexagon consisting of six triangles with side a = 12 cm and height va = 10.4 cm. The prism height is 5 cm. Calculate the volume and surface of the prism!
  17. Triangular prism
    hranol_3 Base of perpendicular triangular prism is a right triangle with leg length 5 cm. Content area of the largest side wall of its surface is 130 cm² and the height of the body is 10 cm. Calculate its volume.
  18. Children pool
    hexagon_prism2 The bottom of the children's pool is a regular hexagon with a = 60 cm side. The distance of opposing sides is 104 cm, the height of the pool is 45 cm. A) How many liters of water can fit into the pool? B) The pool is made of a double layer of plastic film.
  19. Tetrahedral prism
    hranol Calculate surface and volume tetrahedral prism, which has a rhomboid-shaped base, and its dimensions are: a = 12 cm, b = 7 cm, ha = 6 cm and prism height h = 10 cm.
  20. Equilateral cylinder
    3d Equilateral cylinder (height = base diameter; h = 2r) has a volume of V = 199 cm3 . Calculate the surface area of the cylinder.

Do you have an interesting mathematical example that you can't solve it? Enter it, and we can try to solve it.



To this e-mail address, we will reply solution; solved examples are also published here. Please enter e-mail correctly and check whether you don't have a full mailbox.