Diagonals
Calculate the length of the diagonals of the rhombus if its side is long 5 and one of its internal angle is 80°.
Result
Result
Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):
Showing 0 comments:

Be the first to comment!
Following knowledge from mathematics are needed to solve this word math problem:
Next similar math problems:
- Diagonals in diamond
In the rhombus is given a = 160 cm, alpha = 60 degrees. Calculate the length of the diagonals.
- Inner angles
The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places.
- Side c
In △ABC a=2, b=4 and ∠C=100°. Calculate length of the side c.
- Triangle and its heights
Calculate the length of the sides of the triangle ABC, if va=5 cm, vb=7 cm and side b is 5 cm shorter than side a.
- Heron backlaw
Calculate missing side in a triangle with sides 17 and 34 and area 275.
- A rhombus
A rhombus has sides of length 10 cm, and the angle between two adjacent sides is 76 degrees. Find the length of the longer diagonal of the rhombus.
- Triangle SAS
Calculate the area and perimeter of the triangle, if the two sides are 51 cm and 110 cm long and angle them clamped is 130 °.
- Four sides of trapezoid
In the trapezoid ABCD is |AB| = 73.6 mm; |BC| = 57 mm; |CD| = 60 mm; |AD| = 58.6 mm. Calculate the size of its interior angles.
- Greatest angle
Calculate the greatest triangle angle with sides 197, 208, 299.
- Triangle
Triangle KLM is given by plane coordinates of vertices: K[11, -10] L[10, 12] M[1, 3]. Calculate its area and itsinterior angles.
- Angles by cosine law
Calculate the size of the angles of the triangle ABC, if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem).
- Medians of isosceles triangle
The isosceles triangle has a base ABC |AB| = 16 cm and 10 cm long arm. What are the length of medians?
- Scalene triangle
Solve the triangle: A = 50°, b = 13, c = 6
- Triangle ABC
Triangle ABC has side lengths m-1, m-2, m-3. What has to be m to be triangle a) rectangular b) acute-angled?
- Three vectors
The three forces whose amplitudes are in ratio 9:10:17 act in the plane at one point so that they are in balance. Determine the angles of the each two forces.
- Vector sum
The magnitude of the vector u is 12 and the magnitude of the vector v is 8. Angle between vectors is 61°. What is the magnitude of the vector u + v?
- Laws
From which law follows directly the validity of Pythagoras' theorem in the right triangle? ?