De Moivre's formula

There are two distinct complex numbers, such that z3 is equal to 1 and z is not equal to 1.

Calculate the sum of these two numbers.

Correct answer:

S =  -1

Step-by-step explanation:

z3 = 1 1 = 1(cos 0 + i sin 0 ) zk = ( cos( 32 π k ) + i sin( 32 π k )) 1/3 z1 = 1 z2 = cos( 120° ) + i sin( 120° ) = 0.5 + 0.86602540378444 i z3 = cos( 240° ) + i sin( 240° ) = 0.5  0.86602540378444 i  S = z2 + z3  S=0.5+(0.5)=1



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Try our complex numbers calculator.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: