Cutting the prism

A prism with a square base with a content of 1 cm2 and a height of 3 cm was cut from a cube with an edge length of 3 cm. What is the surface of the body formed from the cube after cutting the prism?

Correct answer:

S =  64 cm2

Step-by-step explanation:

a=3 cm S1=1 cm2 c=3 cm  S2=6 c2=6 32=54 cm2  b=S1=1=1 cm a=c  S=S2+4 b c2 S1=54+4 1 32 1=64 cm2

We will be pleased if You send us any improvements to this math problem. Thank you!


We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions:

  • Prism
    3b_hranol Right-angled prism, whose base is a right triangle with leg a = 3 cm and hypotenuse c = 13 cm, has the same volume as a cube with an edge length of 3 dm. a) Find the height of the prism b) Calculate the surface of the prism c) What percentage of the cube'
  • Prism
    rhombic_prism Calculate the surface area and volume of a prism with a body height h = 10 cm, and its base has the shape of a rhomboid with sides a = 5.8 cm, b = 3 cm, and the distance of its two longer sides is w = 2.4 cm.
  • Square prism
    hranol4sreg_4 Calculate the volume of a square prism of high 2 dm wherein the base is: rectangle with sides 17 cm and 1.3 dm
  • 3sides prism
    prism_3 The base of vertical prism is an isosceles triangle whose base is 10 cm and the arm is 13 cm long. Prism height is three times the height of base triangle. Calculate the surface area of the prism.
  • Quadrilateral pyramid
    jehlan_1 We have a regular quadrilateral pyramid with a base edge a = 10 cm and a height v = 7 cm. Calculate 1/base content 2/casing content 3/pyramid surface 4/volume of the pyramid
  • Trapezoidal prism
    lichobeznik-stredni_pricka_5 Calculate the surface of the quadrilateral prism ABCDA'B'C'D 'with the trapezoidal base ABCD. The height of the prism is 12 cm; ABCD trapezoidal data: AB base length is 8 cm, CD base length is 3 cm, BC arm length is 4 cm, and AC diagonal length is 7 cm. L
  • Quadrilateral prism
    kosostvorec_2 Calculate the surface of a quadrilateral prism according to the input: Area of the diamond base S1 = 2.8 m2, length of the base edge a = 14 dm, height of the prism 1,500 mm.
  • Prism
    cuboid_2 Three cubes are glued into a prism. The sum of the lengths of all its edges is 115 cm. What is the length of one edge of the original cube?
  • The body
    body_cubes The body on the figure consists of cubes with an edge length 10 cm. What surface has this body?
  • Four prisms
    hranol4b Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm2 b) 300 cm2 c) 3000 cm3 d) 300 cm3 Question No.2: The prism base is a rhombus with a side length of 30 cm and a height of 27 cm. The height of t
  • Octagonal mat
    8gon_1 Octagonal mat formed from a square plate with a side of 40 cm so that every corner cut the isosceles triangle with leg 3.6 cm. What is the content area of one mat?
  • Surface area
    kvader11_6 Calculate the surface area of a four-sides 2-m high prism which base is a rectangle with sides 17 cm and 1.3 dm
  • Tetrahedral prism
    hranol_1 The height of a regular tetrahedral prism is three times greater than the length of the base edge. Calculate the length of the base edge, if you know that the prism volume is 2187 cm3.
  • Triangular prism
    prism3s Calculate the volume and surface of the triangular prism ABCDEF with base of a isosceles triangle. Base's height is 16 cm, leg 10 cm, base height vc = 6 cm. The prism height is 9 cm.
  • Largest wall
    cuboid Find the content of the largest wall of a prism with a rectangle base with a height of 4 dm, side c = 5 cm, and side b = 6 cm.
  • Quadrilateral prism
    cuboid The surface of the regular quadrilateral prism is 8800 cm2, the base edge is 20 cm long. Calculate the volume of the prism
  • Cube-shaped container
    watertank The cube-shaped container has a height of 52 cm and a square base. The container was filled to the brim with water, then we immersed a metal cube in it, which caused 2.7 l of water to flow out of the container. After removing the cube from the water, the