# Spherical segment

Calculate the volume of a spherical segment 18 cm high. The diameter of the lower base is 80 cm, the upper base 60 cm.

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Tip: Our volume units converter will help you with the conversion of volume units.

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Next similar math problems:

- Cone

Circular cone of height 15 cm and volume 5699 cm^{3}is at one-third of the height (measured from the bottom) cut by a plane parallel to the base. Calculate the radius and circumference of the circular cut. - Spherical segment

The spherical segment with height h=5 has a volume V=117. Calculate the radius of the sphere of which is cut this segment. - Equilateral cylinder

Equilateral cylinder (height = base diameter; h = 2r) has a volume of V = 199 cm^{3}. Calculate the surface area of the cylinder. - Sphere parts, segment

A sphere with a diameter of 20.6 cm, the cut is a circle with a diameter of 16.2 cm. .What are the volume of the segment and the surface of the segment? - Pebble

The aquarium with internal dimensions of the bottom 40 cm × 35 cm and a height of 30 cm is filled with two-thirds of water. Calculate how many millimeters the water level in the aquarium rises by dipping a pebble-shaped sphere with a diameter of 18 cm. - Uboid volume

Calculate the cuboid volume if the walls are 30cm², 35cm², 42cm² - Iron sphere

Iron sphere has weight 100 kg and density ρ = 7600 kg/m^{3}. Calculate the volume, surface and diameter of the sphere. - Tetrahedral prism

The height of a regular tetrahedral prism is three times greater than the length of the base edge. Calculate the length of the base edge, if you know that the prism volume is 2187 cm^{3}. - Four prisms

Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm^{2}b) 300 cm^{2}c) 3000 cm^{3}d) 300 cm^{3}Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig - Volume and surface

Calculate the volume and surface area of the cylinder when the cylinder height and base diameter is in a ratio of 3:4 and the area of the cylinder jacket is 24 dm^{2}. - 3d printer

3D printing ABS filament with diameter 1.75 mm has density 1.04 g/cm^{3}. Find the length of m = 5 kg spool filament. (how to calculate length) - Cylinder

In a 1-meter diameter cylinder is 1413 liters of water, which is 60% of the cylinder. Calculate the cylinder height in meters, do not write the units. The resulting value round and write as an integer. - Horizontal Cylindrical Segment

How much fuel is in the tank of horizontal cylindrical segment with a length 10m, width of level 1 meter and level is 0.2 meters below the upper side of the tank? - MO SK/CZ Z9–I–3

John had the ball that rolled into the pool and it swam in the water. Its highest point was 2 cm above the surface. Diameter of circle that marked the water level on the surface of the ball was 8 cm. Determine the diameter of John ball. - Pyramid cut

We cut the regular square pyramid with a parallel plane to the two parts (see figure). The volume of the smaller pyramid is 20% of the volume of the original one. The bottom of the base of the smaller pyramid has a content of 10 cm^{2}. Find the area of the - Diameter = height

The surface of the cylinder, the height of which is equal to the diameter of the base, is 4239 cm square. Calculate the cylinder volume. - Sphere cut

A sphere segment is cut off from a sphere k with radius r = 1. The volume of the sphere inscribed in this segment is equal to 1/6 of the volume of the segment. What is the distance of the cutting plane from the center of the sphere?