Determine 73454

The volume of the cut cone is V = 38000π cm3. The radius of the lower base is 10 cm larger than the radius of the upper base. Determine the radius of the base if height v = 60 cm.

Correct answer:

r1 =  20 cm
r2 =  30 cm

Step-by-step explanation:

V=38000π=38000 3.1416119380.5208 cm3 v=60 cm  r2=10+r1  V = 31 π   v    (r12 + r1 r2 + r22)  V=pi/3 v (x2+x (10+x)+(10+x)2)  119380.52083641=3.1415926/3 60 (x2+x (10+x)+(10+x)2) 188.49555599999x21884.956x+113097.336=0 188.49555599999x2+1884.956x113097.336=0  a=188.495556;b=1884.956;c=113097.336 D=b24ac=1884.95624188.495556(113097.336)=88826438.114787 D>0  x1,2=2ab±D=376.9911121884.96±88826438.11 x1,2=5±25 x1=20.000000216 x2=30.000000216  r1=x1=20=20 cm

Our quadratic equation calculator calculates it.

r2=10+r1=10+20=30=30 cm   Verifying Solution:  V2=31 π v (r12+r1 r2+r22)=31 3.1416 60 (202+20 30+302)119380.5208 cm3



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
Tip: Our volume units converter will help you convert volume units.

You need to know the following knowledge to solve this word math problem:

Related math problems and questions: