# (instructions: 3314

Find the distance of the parallels, which equations are:

x = 3-4t, y = 2 + t and x = -4t, y = 1 + t

(instructions: select a point on one line and find its distance from the other line)

x = 3-4t, y = 2 + t and x = -4t, y = 1 + t

(instructions: select a point on one line and find its distance from the other line)

### Correct answer:

**Showing 1 comment:**

**Math student**

Using a ruler a pair of compasses only construct triangle ABC in which AB=5cm BC=5.9cm and<BAC=45°

Tips for related online calculators

The line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.

Our vector sum calculator can add two vectors given by their magnitudes and by included angle.

Our vector sum calculator can add two vectors given by their magnitudes and by included angle.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - Perpendicular projection

Determine the distance of a point B[1, -3] from the perpendicular projection of a point A[3, -2] on a straight line 2 x + y + 1 = 0. - Find the 5

Find the equation of the circle with the center at (1,20), which touches the line 8x+5y-19=0 - Parametric form

Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. - Find the

Find the image A' of point A [1,2] in axial symmetry with the axis p: x = -1 + 3t, y = -2 + t (t = are real number) - Tangents to ellipse

Find the magnitude of the angle at which the ellipse x² + 5 y² = 5 is visible from the point P[5, 1]. - Closest 82051

On the line p: 2x + y + 1 = 0, find the point A ∈ p that is closest to the point P =(1,0) - Circle

The circle touches two parallel lines, p, and q, and its center lies on line a, which is the secant of lines p and q. Write the equation of the circle and determine the coordinates of the center and radius. p: x-10 = 0 q: -x-19 = 0 a: 9x-4y+5 = 0 - Coordinates of the vertices

Calculate the coordinates of the vertices of a triangle if the equations of its sides are 7x-4y-1 = 0 x-2y + 7 = 0 2x + y + 4 = 0 - Slope form

Find the equation of a line given the point X(8, 1) and slope -2.8. Arrange your answer in the form y = ax + b, where a and b are the constants. - Line

Write an equation of a line parallel to To 9x + 3y = 8 That Passes Through The Point (-1, -4). Write in form ax+by=c. - Sphere equation

Obtain the equation of a sphere. Its center is on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1). - Curve and line

The equation of a curve C is y=2x² -8x+9, and the equation of a line L is x+ y=3 (1) Find the x coordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C? - X-coordinate 81737

In triangle ABC, determine the coordinates of point B if you know that points A and B lie on the line 3x-y-5=0, points A and C lie on line 2x+3y+4=0, point C lies on the x-coordinate axis, and the angle at vertex C is right. - Coordinates

Determine the coordinates of the vertices and the area of the parallelogram, the two sides of which lie on the lines 8x + 3y + 1 = 0, 2x + y-1 = 0 and the diagonal on the line 3x + 2y + 3 = 0 - General line equations

In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the slope form gives the line: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) the lin - Midpoint 6

For line segment length is given: FM=8a+1, FG=42. Point M is the midpoint of FG. Find unknown a.