Top-open tank

The top-open tank has the shape of a truncated rotating cone, which stands on a smaller base. The tank's volume is 465 m3, the radii of the bases are 4 m and 3 m. Find the depth of the tank.

Correct answer:

h =  12 m

Step-by-step explanation:

r1=4 m r2=3 m V=465 m3  V=13πh(r12+r1 r2+r22)  h=3 Vπ (r12+r1 r2+r22)=3 4653.1416 (42+4 3+32)=12 m



We will be pleased if You send us any improvements to this math problem. Thank you!



avatar




Tips to related online calculators
Tip: Our volume units converter will help you with the conversion of volume units.

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions:

  • The truncated
    truncated_cone_1 The truncated rotating cone has bases with radii r1 = 8 cm, r2 = 4 cm and height v = 5 cm. What is the volume of the cone from which the truncated cone originated?
  • Truncated cone
    kuzel_komoly Calculate the height of the rotating truncated cone with volume V = 794 cm3 and a base radii r1 = 9.9 cm and r2 = 9.8 cm.
  • Truncated cone 6
    frustum-of-a-right-circular-cone Calculate the volume of the truncated cone whose bases consist of an inscribed circle and a circle circumscribed to the opposite sides of the cube with the edge length a=1.
  • Truncated cone 3
    rotacnikomolykuzel The surface of the truncated rotating cone S = 7697 meters square, the substructure diameter is 56m and 42m, determine the height of the tang.
  • The surface
    truncated_cone The surface of a truncated rotating cone with side s = 13 cm is S = 510π cm2. Find the radii of the bases when their difference in lengths is 10cm.
  • Frustum of a cone
    cone-frustrum A reservoir contains 28.54 m3 of water when full. The diameter of the upper base is 3.5 m, while at the lower base is 2.5 m. Find the height if the reservoir is in the form of a frustum of a right circular cone.
  • Rotating cone
    kuzel2 Find the rotating cone's surface and volume if its side is 150 mm long and the circumference of the base is 43.96 cm.
  • Digging a pit
    komoly_jehlan The pit has the shape of a regular quadrilateral truncated pyramid. The edges of the bases are 14m and 10m long. The sidewalls form an angle of 135° with a smaller base. Determine how many m3 of soil were excavated when digging the pit?
  • Truncated pyramid
    komoly_ihlan How many cubic meters is the volume of a regular four-sided truncated pyramid with edges one meter and 60 cm and high 250 mm?
  • Cone - from volume surface area
    kuzel_rs The volume of the rotating cone is 1,018.87 dm3, and its height is 120 cm. What is the surface area of the cone?
  • Truncated cone
    komoly_kuzel A truncated cone has bases with radiuses of 40 cm and 10 cm and a height of 25 cm. Calculate its surface area and volume.
  • Truncated cone
    zrezany_kuzel Find the volume and surface area of the truncated cone if r1 = 12 cm, r2 = 5 cm and side s = 10 cm.
  • Surface and volume
    kuzel2_1 Find the surface and volume of the rotating cone if the circumference of its base is 62.8 m and the side is 25 m long.
  • The solar
    valec2_3 The solar heating tank has the shape of a rotating cylinder. When the tank is in a horizontal position, the water in the tank wets 4/5 each tank bases. If we place the tank in a vertical position, the water in the tank will reach up to 1.2 m. Calculate th
  • Quadrangular pyramid
    komoly Calculate the surface area and volume of a regular quadrangular pyramid: sides of bases (bottom, top): a1 = 18 cm, a2 = 6cm angle α = 60 ° (Angle α is the angle between the sidewall and the base plane.) S =? , V =?
  • Two vases
    komolykuzel Michaela has two vases in her collection. The first vase has the shape of a cone with a base diameter d = 20 cm; the second vase has the shape of a truncated cone with the lower base d1 = 25 cm and with the diameter of the upper base d2 = 15 cm. Which vas
  • Truncated pyramid
    truncated_pyramid Find the volume and surface area of a regular quadrilateral truncated pyramid if base lengths a1 = 17 cm, a2 = 5 cm, height v = 8 cm.