# Truncated cone

Calculate the height of the rotating truncated cone with volume V = 794 cm

^{3}and a base radii r_{1}= 9.9 cm and r_{2}= 9.8 cm.### Correct answer:

**Showing 5 comments:**

**Dr Math**

it's formula; can be proved....https://math.stackexchange.com/questions/1626218/calculation-of-rise-in-height-of-water-in-a-frustum-of-right-circular-cone

**Kukoslav**

need to solve a cubic equation, as obtained above, to find rises in heights... integral

Tips to related online calculators

Tip: Our volume units converter will help you with the conversion of volume units.

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- The truncated

The truncated rotating cone has bases with radii r1 = 8 cm, r2 = 4 cm and height v = 5 cm. What is the volume of the cone from which the truncated cone originated? - Truncated cone

Calculate the volume of a truncated cone with base radiuses r_{1}=13 cm, r_{2}= 10 cm and height v = 8 cm. - Frustrum - volume, area

Calculate the surface and volume of a truncated rotating cone with base radii of 8 cm and 4 cm, height 5 cm. - Frustrum - volume, area

Calculate the surface and volume of the truncated cone, the radius of the smaller figure is 4 cm, the height of the cone is 4 cm and the side of the truncated cone is 5 cm. - Top-open tank

The top-open tank has the shape of a truncated rotating cone, which stands on a smaller base. The tank's volume is 465 m^{3}, the radii of the bases are 4 m and 3 m. Find the depth of the tank. - Frustum of a cone

A reservoir contains 28.54 m^{3}of water when full. The diameter of the upper base is 3.5 m, while at the lower base is 2.5 m. Find the height if the reservoir is in the form of a frustum of a right circular cone. - Equilateral cone

We pour so much water into a container that has the shape of an equilateral cone, the base of which has a radius r = 6 cm, that one-third of the volume of the cone is filled. How high will the water reach if we turn the cone upside down? - Truncated cone

Find the volume and surface area of the truncated cone if r1 = 12 cm, r2 = 5 cm and side s = 10 cm. - Cone A2V

The surface of the cone in the plane is a circular arc with central angle of 126° and area 415 cm^{2}. Calculate the volume of a cone. - The surface

The surface of a truncated rotating cone with side s = 13 cm is S = 510π cm^{2}. Find the radii of the bases when their difference in lengths is 10cm. - Cutting cone

A cone with a base radius of 10 cm and a height of 12 cm is given. At what height above the base should we divide it by a section parallel to the base so that the volumes of the two resulting bodies are the same? Express the result in cm. - The cone

The cone with a base radius of 12 cm and a height of 20 cm was truncated at a distance of 6 cm from the base, thus creating a truncated cone. Find the radius of the base of the truncated cone. - MO SK/CZ Z9–I–3

John had the ball that rolled into the pool, and it swam in the water. Its highest point was 2 cm above the surface. The diameter of the circle that marked the water level on the surface of the ball was 8 cm. Find the diameter of John ball. - Wooden bowls

20 wooden bowls in the shape of a truncated cone should be painted on the outside and inside with wood varnish. We need 0.1 l of paint to paint 200 cm^{2}. How many liters of paint do we have to buy if the bowls are 25 cm high, the bottom of the bowl has a d - Truncated cone

A truncated cone has bases with radiuses of 40 cm and 10 cm and a height of 25 cm. Calculate its surface area and volume. - From plasticine

Michael modeled from plasticine a 15 cm high pyramid with a rectangular base with the sides of the base a = 12 cm and b = 8 cm. From this pyramid, Janka modeled a rotating cone with a base diameter d = 10 cm. How tall was Janka's cone? - The cylinder

In a rotating cylinder it is given: the surface of the shell (without bases) S = 96 cm^{2}and the volume V = 192 cm cubic. Calculate the radius and height of this cylinder.