Three pillars

On a straight road, three pillars are 6 m high at the same distance of 10 m. At what angle of view does Vlado see each pillar if it is 30 m from the first and his eyes are at 1.8 m high?

Correct answer:

A =  11.4032 °
B =  8.5707 °
C =  6.8633 °

Step-by-step explanation:

n=3 h=6 m a=10 m l1=30 m o=1.8 m  tanα=o:l1 α=π180°arctan(o/l1)=π180°arctan(1.8/30)3.4336   tanβ=(ho):l1 β=π180°arctan((ho)/l1)=π180°arctan((61.8)/30)7.9696   A=α+β=3.4336+7.9696=11.4032=11°2412"
θ=arctan(o/(l1+a))+arctan((ho)/(l1+a))=arctan(1.8/(30+10))+arctan((61.8)/(30+10))0.1496 rad B=θ  °=θ π180   °=0.1496 π180   °=8.571  °=8.5707=8°3414"
Ψ=arctan(o/(l1+2 a))+arctan((ho)/(l1+2 a))=arctan(1.8/(30+2 10))+arctan((61.8)/(30+2 10))0.1198 rad C=Ψ  °=Ψ π180   °=0.1198 π180   °=6.863  °=6.8633=6°5148"

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips to related online calculators
See also our right triangle calculator.
See also our trigonometric triangle calculator.

We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: