Subtracting complex in polar

Given w =√2(cosine (p/4) + i sine (pi/4) ) and
z = 2 (cosine (pi/2) + i sine (pi/2) ),

what is w - z expressed in polar form?

Correct answer:

m =  1.4142
A =  -0.7854 rad

Step-by-step explanation:

wx=2 cos(π/4)=2 cos(3.1416/4)=1 wy=2 sin(π/4)=2 sin(3.1416/4)=1  zx=2 cos(π/2)=2 cos(3.1416/2)1.22461016 zy=2 sin(π/2)=2 sin(3.1416/2)=2  x=wxzx=11.22461016=1 y=wyzy=12=1  m=x2+y2=12+(1)2=2=1.4142
A=arctan(y/x)=arctan((1)/1)0.7854 rad  α=A  °=A π180   °=(0.7854) π180   °=45  °



Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators

You need to know the following knowledge to solve this word math problem:

Related math problems and questions: