Right angled triangle 2

LMN is a right-angled triangle with vertices at L(1,3), M(3,5), and N(6,n). Given angle LMN is 90° find n

Correct result:

n =  2

Solution:

n1=(13)2+(35)2=2 22.8284 m2=(16)2+(3n)2 m2=((13)2+(35)2)+(36)2+(5n)2 (16)2+(3n)2=(13)2+(35)2+(36)2+(5n)2 4n=8 n=8/4=2

Try calculation via our triangle calculator.




We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
For Basic calculations in analytic geometry is a helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Find the 3
    segment_2 Find the distance and midpoint between A(1,2) and B(5,5).
  • Vertices of a right triangle
    right_triangle_5 Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle.
  • Triangles
    triangles_6 Find out whether given sizes of the angles can be interior angles of a triangle: a) 23°10',84°30',72°20' b) 90°,41°33',48°37' c) 14°51',90°,75°49' d) 58°58',59°59',60°3'
  • Quadrilateral 2
    quadrilateral Show that the quadrilateral with vertices P1(0,1), P2(4,2) P3(3,6) P4(-5,4) has two right triangles.
  • Triangle IRT
    triangles_5 In isosceles right triangle ABC with right angle at vertex C is coordinates: A (-1, 2); C (-5, -2) Calculate the length of segment AB.
  • Right triangle from axes
    axes2 A line segment has its ends on the coordinate axes and forms with them a triangle of area equal to 36 square units. The segment passes through the point ( 5,2). What is the slope of the line segment?
  • General line equations
    lines_1 In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the line is given by the slope form: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) t
  • Distance problem
    linear_eq_3 A=(x, x) B=(1,4) Distance AB=√5, find x;
  • Three points
    abs1_1 Three points A (-3;-5) B (9;-10) and C (2;k) . AB=AC What is value of k?
  • Sphere equation
    sphere2 Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
  • Resultant force
    3forces Calculate mathematically and graphically the resultant of a three forces with a common centre if: F1 = 50 kN α1 = 30° F2 = 40 kN α2 = 45° F3 = 40 kN α3 = 25°
  • Vertices of RT
    RightTriangleMidpoint_3 Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.
  • 30-60-90
    30-60-90 The longer leg of a 30°-60°-90° triangle measures 5. What is the length of the shorter leg?
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Perimeter of triangle
    rt_triangle_1 In triangle ABC angle A is 60° angle B is 90° side size c is 15 cm. Calculate the triangle circumference.
  • Center of line segment
    stredna_priecka_1 Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is .
  • Right angled triangle 3
    right_triangle_3 Side b = 1.5, hypotenuse angle A = 70 degrees, Angle B = 20 degrees. Find its unknown sides length.