# Sphere equation

Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).

**Correct result:****Showing 0 comments:**

Tips to related online calculators

For Basic calculations in analytic geometry is a helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Sphere from tree points

Equation of sphere with three point (a,0,0), (0, a,0), (0,0, a) and center lies on plane x+y+z=a - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - On a line

On a line p : 3 x - 4 y - 3 = 0, determine the point C equidistant from points A[4, 4] and B[7, 1]. - Function 3

Function f(x)=a(x-r)(x-s) the graph of the function has x- intercept at (-4, 0) and (2, 0) and passes through the point (-2,-8). Find constant a, r, s. - Prove

Prove that k1 and k2 are the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x^{2}+y^{2}+2x+4y+1=0 k2: x^{2}+y^{2}-8x+6y+9=0 - Quadrilateral 2

Show that the quadrilateral with vertices P1(0,1), P2(4,2) P3(3,6) P4(-5,4) has two right triangles. - Coordinates

Determine the coordinates of the vertices and the content of the parallelogram, the two sides of which lie on the lines 8x + 3y + 1 = 0, 2x + y-1 = 0 and the diagonal on the line 3x + 2y + 3 = 0 - Intersections 3

Find the intersections of the circles x^{2}+ y^{2}+ 6 x - 10 y + 9 = 0 and x^{2}+ y^{2}+ 18 x + 4 y + 21 = 0 - Right triangle from axes

A line segment has its ends on the coordinate axes and forms with them a triangle of area equal to 36 square units. The segment passes through the point ( 5,2). What is the slope of the line segment? - General line equations

In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the line is given by the slope form: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) t - Isosceles triangle

In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C. - Touch x-axis

Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis. - Circle

The circle touches two parallel lines p and q, and its center lies on line a, which is the secant of lines p and q. Write the equation of the circle and determine the coordinates of the center and radius. p: x-10 = 0 q: -x-19 = 0 a: 9x-4y+5 = 0 - Vertices of a right triangle

Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle. - Ellipse

Ellipse is expressed by equation 9x^{2}+ 25y^{2}- 54x - 100y - 44 = 0. Find the length of primary and secondary axes, eccentricity, and coordinates of the center of the ellipse. - Hyperbola

Find the equation of hyperbola that passes through the point M [30; 24] and has focal points at F1 [0; 4 sqrt 6], F2 [0; -4 sqrt 6]. - Calculate 6

Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].