Guľa

Získajte rovnicu guľovej plochy so stredom na čiare 3x + 2z = 0 = 4x-5y a prechádza bodmi (0, -2, -4) a (2, -1,1).

Správny výsledok:

r =  3,9398
x0 =  1,4894
y0 =  1,1915
z0 =  -2,234

Riešenie:

3x+2z=0 4x5y=0 r2=(x0)2+(y+2)2+(z+4)2 r2=(x2)2+(y+1)2+(z1)2  (xx0)2+(yy0)2+(zz0)2=r2  r>0  r=34289/47=3.9398
x0=70/47=7047=1.4894
y0=56/47=5647=1.1915
z0=105/47=10547=2.234



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 0 komentárov:
avatar




Tipy na súvisiace online kalkulačky
Základom výpočtov v analytickej geometrií je dobrá kalkulačka rovnice priamky, ktorá zo súradníc dvoch bodov v rovine vypočíta smernicový, normálový aj parametrický tvar priamky, smernicu, smerový uhol, smerový vektor, dĺžku úsečky, priesečníky so súradnícovými osami atď.
Hľadáte pomoc s výpočtom koreňov kvadratickej rovnice?
Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3   video4

Ďaľšie podobné príklady a úlohy:

  • Na priamke
    primka Na priamke p: x = 4 + t, y = 3 + 2t, t sú R, určte bod C, ktorý má rovnakú vzdialenosť od bodov A [1,2] a B [-1,0].
  • Na priamke
    linearna Na priamke p: 3 x - 4 y - 3 = 0, stanovte súradnice bodu C, ktorý je rovnako vzdialený od bodov A [4, 4] a B [7, 1].
  • Guľa a tri body
    sphere2_1 Nájdite rovnicu gule ak na povrchu gule ležia tri body (a, 0,0), (0, a, 0), (0,0, a) a stred leží na rovine x + y + z = a.
  • Všeobecná rovnica
    lines_1 Vo všetkých príkladoch napíšte VŠEOBECNÚ rovnicami priamky, ktorá je nejakým spôsobom zadaná. A) priamka je daná parametricky: x = - 4 + 2p; y = 2 - 3p B) priamka je daná smernicovým tvarom: y = 3x - 1 C) priamka je daná dvomi bodmi: A [3; -3], B [-5; 2]
  • Nájsť 2
    touch_circle Nájdite rovnice kružníc, ktoré prechádzajú bodmi A(-2;4) a B(0;2) a dotýkajú sa osi x.
  • Kružnica a dotyčnica
    distance-between-point-line Nájdite rovnicu kružnice so stredom v (1,20), ktorá sa dotýka priamky 8x + 5y-19 = 0
  • Štvoruholník
    quadrilateral Ukážte, že štvoruholník s vrcholmi P1 (0,1), P2 (4,2) P3 (3,6) P4 (-5,4) má dva pravé trojuholníky.
  • Sklon úsečky
    axes2 Úsečka má svoje koncové body na súradnicových osiach a formuje s nimi trojuholník s plochou 36 štvorcových jednotiek. Úsečka prechádza bodom (5,2). Aký je sklon úsečky?
  • Nádoby - prelievanie
    nadoby Máme nádobu s obsahom 7 litrov, 5 litrov a 2 litre. Najväčšia nádoba je naplnená tekutinou, ostatné sú prázdne. Dokážeš iba prelievaním získať 5 litrov a dvakrát po jednom litri tekutiny? Na koľko preliatie to ide?
  • Rovnica hyperboly
    hyperbola_4 Napíšte rovnicu hyperboly so stredom S[0;0], ktorá prechádza bodmi: A[5;3] B[8; -10]
  • V rovnoramennom 4
    rr_triangle3 V rovnoramennom trojuholníku ABC so základňou AB; A[-3,4]; B[1,6] leží vrchol C na priamke 5x – 6y – 16 =0. Vypočítajte súradnice vrcholu C.
  • Kružnica
    kruznica Kružnica sa dotýka dvoch rovnobežiek p a q, jej stred leží na priamke a, ktorá je sečnica oboch priamok. Napíšte jej rovnicu a určte súradnice stredu a polomeru. p: x-10 = 0 q: -x-19 = 0 a: 9x-4y+5 = 0
  • Pravouhlý trojuholník
    vertex_triangle_right LMN je pravouhlý trojuholník s vrcholmi L (1,3), M (3,5) a N (6, n). Ak je uhol LMN je 90° nájdite n.
  • Súradnice stran, výsek, osí
    triangle_rt_taznice Je daný trojuholník ABC: A (-2,3), B (4, -1), C (2,5). Určte všeobecné rovnice priamok, na ktorých ležia,: a) strana AB, b) výška Vc, c) Os strany AB, d) Ťažnice ta
  • Vzdialenosť
    distance_point_line Vypočítajte vzdialenosť bodu A [0, 2] od priamky prechádzajúcej bodmi B [9, 5] a C [1, -1].
  • Nájdite
    circle_inside_rhombus Nájdite rovnicu kružnice vpísanej do kosoštvorca ABCD, ak súradnice vrcholov sú A [1, -2], B [8, -3] a C [9, 4].
  • Parametrický tvar
    vzdalenost Vypočítajte vzdialenosť bodu A [2,1] od priamky p: X = -1 + 3t Y = 5-4t Priamka p má parametrický tvar rovnica priamky. ..