Calculate 62864

The block volume is 1440 cm3, its surface is 792 cm2, and the area of one of its walls is 92 cm2. Calculate the lengths of its sides.

Correct answer:

a =  15.6522 cm
b =  11.2296 cm
c =  8.1927 cm

Step-by-step explanation:

V=1440 cm3 S=792 cm3 S1=92 cm2  S1 = bc V = abc  a=V/S1=1440/92=15.6522 cm
S = 2(ab+bc+ca) = 2(ab + S1 + ca) S/2 S1 = ab+ca b+c = (S/2  S1) / a V/a = bc = b((S/2  S1) / a  b)  V/a=b((S/2S1)/ab)  1440/15.652173913043=b((792/292)/15.652173913043b) b219.422b+92=0  p=1;q=19.422;r=92 D=q24pr=19.42224192=9.2227160494 D>0  b1,2=2pq±D=219.42±9.22 b1,2=9.711111±1.518446 b1=11.229557361 b2=8.192664862  b=b1=11.2296=11.2296 cm

Our quadratic equation calculator calculates it.

c=(S/2S1)/ab=(792/292)/15.652211.22968.1927 cm V1=a b c=15.6522 11.2296 8.1927=1440 cm3 V1=V  S2=2 (a b+b c+c a)=2 (15.6522 11.2296+11.2296 8.1927+8.1927 15.6522)=792 cm2  S2=S  c=8.19278.1927   Verifying Solution:  S2=2 (a b+b c+c a)=2 (15.6522 11.2296+11.2296 8.1927+8.1927 15.6522)=792 cm2 V2=a b c=15.6522 11.2296 8.1927=1440 cm3 S3=b c=11.2296 8.1927=92 cm2



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
Tip: Our volume units converter will help you convert volume units.

You need to know the following knowledge to solve this word math problem:

Related math problems and questions: