# Recursion squares

In the square ABCD is inscribed a square so that its vertices lie at the centers of the sides of the square ABCD.The procedure of inscribing square is repeated this way. Side length of square ABCD is a = 22 cm.

Calculate:

a) the sum of perimeters of all squares

b) the sum of area of all squares

Calculate:

a) the sum of perimeters of all squares

b) the sum of area of all squares

**Result****Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### Following knowledge from mathematics are needed to solve this word math problem:

## Next similar math problems:

- The tickets

The tickets to the show cost some integer number greater than 1. Also, the sum of the price of the children's and adult tickets, as well as their product, was the power of the prime number. Find all possible ticket prices. - Root

The root of the equation ? is: ? - Diophantus

We know little about this Greek mathematician from Alexandria, except that he lived around 3rd century A.D. Thanks to an admirer of his, who described his life by means of an algebraic riddle, we know at least something about his life. Diophantus's youth l - Miraculous tree

Miraculous tree grows so fast that the first day increases its height by half the total height of the second day by the third, the third day by a quarter, etc. How many times will increase its height after 6 days? - Saving per cents

The first day I save 1 cent and every next day cent more. How many I saved per year (365 days)? - Fraction

Fraction ? write as fraction a/b, a, b is integers numerator/denominator. - Decimal to fraction

Write decimal number 8.638333333 as a fraction A/B in the basic form. Given decimal has infinite repeating figures. - Series and sequences

Find a fraction equivalent to the recurring decimal? 0.435643564356 - Infinite sum of areas

Above the height of the equilateral triangle ABC is constructed an equilateral triangle A1, B1, C1, of the height of the equilateral triangle built A2, B2, C2, and so on. The procedure is repeated continuously. What is the total sum of the areas of all tri - 45th birthday

This year Mrs. Clever celebrated her 45th birthday. Her three children are now 7.11 and 15 years old. In how many years will Mrs. Clever's age be equal to the sum of her children's years? - Spending money

Boris spent 324 €. Robo spent 130 € more. How much did they spend together? - The sum

The sum of the first 10 members of the arithmetic sequence is 120. What will be the sum if the difference is reduced by 2? - Expressions with variable

This is algebra. Let n represent an unknown number and write the following expressions: 1. 4 times the sum of 7 and the number x 2. 4 times 7 plus the number x 3. 7 less than the product of 4 and the number x 4. 7 times the quantity 4 more than the nu - Expressions

Let k represent an unknown number, express the following expressions: 1. The sum of the number n and two 2. The quotient of the number n and nine 3. Twice the number n 4. The difference between nine and the number n 5. Nine less than the number n - Algebra problem

This is algebra. Let n represent an unknown number. 1. Eight more than the number n 2. Three times the number n 3. The product of the number n and eight 4. Three less than the number n 5. Three decreased by the number n - Stamps

Tibor has four times more stamps than Miro and seven times more stamps than Stano. How many stamps have all three if Tibor has 504 stamps? - Coffee

In stock are three kinds of branded coffee prices: I. kind......248 Kč/kg II. kind......134 Kč/kg III. kind.....270 Kč/kg Mixing these three species in the ratio 10:7:7 create a mixture. What will be the price of 1100 grams of this mixture?