Calculate 72624
The perimeter of the ABC triangle is 19.6 cm. The following applies to the lengths of its sides: a: c = 1:2, b: c = 5:6. Calculate the lengths of all sides of the triangle ABC.
Correct answer:

Tips for related online calculators
Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.
Check out our ratio calculator.
See also our trigonometric triangle calculator.
Check out our ratio calculator.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
algebraplanimetricsbasic operations and conceptsnumbersGrade of the word problem
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- The triangle - sides
The two sides of the triangle have side lengths a = 6cm and b = 13cm. Then the following applies to the length of the third side c: (A) 7
- Right-angled 81019
In the right-angled triangle ABC (AB is the hypotenuse), a : b = 24 : 7, and the height to the side c = 12.6 cm applies. Calculate the lengths of the sides of triangle ABC.
- Perimeter 66414
The perimeter of triangle ABC is 162 dm. The lengths of its sides are in the ratios a:b = 2:3 and a:c = 8:7. Determine the lengths of the sides of the triangle.
- Medians and sides
Triangle ABC in the plane Oxy has the coordinates of the points: A = 2.7 B = -4.3 C-6-1 Try to calculate the lengths of all medians and all sides.
- Right-angled triangle
The right-angled triangle XYZ is similar to the triangle ABC, which has a right angle at the vertex X. The following applies: side a = 9 cm, x=4 cm, x = v-4 (v = height of triangle ABC). Calculate the unknown side lengths of both triangles.
- PT - Pythagorean
A right triangle ABC has hypotenuse c and legs a, and b of the following lengths. Estimate the length of its remaining side and compare your estimates with your calculations. a) a = 4 cm; b = 5 cm b) a = 6.8 m; b = 9 m c) a= 8.9 m; b = 1 m d) b= 10 cm; c
- Triangle
In triangle ABC, there is a point S with the center of the inscribed circle. The area of quadrilateral ABCS is equal to four-fifths of the area of triangle ABC. The lengths of the sides of triangle ABC expressed in centimeters are all integers and the