Axial section

The diagonal of the axial section of the rotating cylinder is 6 cm, and its surface is 30 cm square. Calculate the radius of the base.

Correct answer:

r =  0.7291 cm

Step-by-step explanation:

u=6 cm S=30 cm2  S = 2π r2 + 2π r h  u2 = (2r)2+h2 u2 = 4r2+h2 r2 = (u2h2)/4  h = u2 4r2   S = 2π r2 + 2π r u2 4r2  2πS = r2 + r u2 4r2 = r(r+(u2r)(u+2r))  S = 2π  (u2h2)/4 + π u2h2 h 30 = 2π  (62h2)/4 + π 62h2 h  h1=1.2987 h2=5.8201 h>0  h=h2=5.8201 cm  r=u2h2/2=625.82012/20.7291 cm   Verifying Solution:  S2=2π r2+2π r h=2 3.1416 0.72912+2 3.1416 0.7291 5.820130.003 cm2 u2=4 r2+h2=4 0.72912+5.82012=6 cm



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
See also our right triangle calculator.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: