RT and circles

Solve the right triangle if the radius of the inscribed circle is r=9 and the radius of the circumscribed circle is R=23.

Correct answer:

a =  37.83
b =  26.17
c =  46

Step-by-step explanation:

R=2c c=2R=46  r=2a+bc a+b=64 a2+b2=2116  2a2128a+1980=0 2 ...  prime number 128=27 1980=2232511 GCD(2,128,1980)=2=2  a264a+990=0  p=1;q=64;r=990 D=q24pr=64241990=136 D>0  a1,2=2pq±D=264±136=264±234 a1,2=32±5.830952 a1=37.830951895 a2=26.169048105   Factored form of the equation:  (a37.830951895)(a26.169048105)=0 
b=((128)(23.323807579381))/(2 (2))=26.17
c=2 23=46

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
See also our right triangle calculator.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: