RT and circles

Solve right triangle if the radius of inscribed circle is r=9 and radius of circumscribed circle is R=23.

Correct result:

a =  37.83
b =  26.17
c =  46

Solution:

R=c2 c=2R=46  r=a+bc2 a+b=64 a2+b2=2116  2a2128a+1980=0  p=2;q=128;r=1980 D=q24pr=1282421980=544 D>0  a1,2=q±D2p=128±5444=128±4344 a1,2=32±5.8309518948453 a1=37.830951894845 a2=26.169048105155   Factored form of the equation:  2(a37.830951894845)(a26.169048105155)=0 R = \dfrac{c}{2} \ \\ c = 2 R = 46 \ \\ \ \\ r = \dfrac{ a+b-c}{2} \ \\ a + b = 64 \ \\ a^2 + b^2 = 2116 \ \\ \ \\ 2a^2 -128a +1980 =0 \ \\ \ \\ p=2; q=-128; r=1980 \ \\ D = q^2 - 4pr = 128^2 - 4\cdot 2 \cdot 1980 = 544 \ \\ D>0 \ \\ \ \\ a_{1,2} = \dfrac{ -q \pm \sqrt{ D } }{ 2p } = \dfrac{ 128 \pm \sqrt{ 544 } }{ 4 } = \dfrac{ 128 \pm 4 \sqrt{ 34 } }{ 4 } \ \\ a_{1,2} = 32 \pm 5.8309518948453 \ \\ a_{1} = 37.830951894845 \ \\ a_{2} = 26.169048105155 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ 2 (a -37.830951894845) (a -26.169048105155) = 0 \ \\
b=((128)(23.323807579381))/(2 (2))=26.17b=(-(-128) - (23.323807579381))/ (2 \cdot \ (2))=26.17
c=2 23=46c=2 \cdot \ 23=46



We would be very happy if you find an error in the example, spelling mistakes, or inaccuracies, and please send it to us. We thank you!






Showing 0 comments:
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Isosceles IV
    iso_triangle In an isosceles triangle ABC is |AC| = |BC| = 13 and |AB| = 10. Calculate the radius of the inscribed (r) and described (R) circle.
  • Chord - TS v2
    chord_TS_1 The radius of circle k measures 87 cm. Chord GH = 22 cm. What is TS?
  • Two parallel chords
    chords_equall The two parallel chords of the circle have the same length of 6 cm and are 8 cm apart. Calculate the radius of the circle.
  • Catheti
    pyt_theorem The hypotenuse of a right triangle is 41 and the sum of legs is 49. Calculate the length of its legs.
  • ABS CN
    complex_num Calculate the absolute value of complex number -15-29i.
  • Triangle ABC
    lalala In a triangle ABC with the side BC of length 2 cm The middle point of AB. Points L and M split AC side into three equal lines. KLM is isosceles triangle with a right angle at the point K. Determine the lengths of the sides AB, AC triangle ABC.
  • Euclid2
    euclid In right triangle ABC with right angle at C is given side a=27 and height v=12. Calculate the perimeter of the triangle.
  • RT triangle and height
    345 Calculate the remaining sides of the right triangle if we know side b = 4 cm long and height to side c h = 2.4 cm.
  • Vector 7
    vectors_sum0_1 Given vector OA(12,16) and vector OB(4,1). Find vector AB and vector |A|.
  • Isosceles triangle
    triangle2_3 The leg of the isosceles triangle is 5 dm, its height is 20 cm longer than the base. Calculate base length z.
  • RTriangle 17
    rt The hypotenuse of a right triangle is 17 cm. If you decrease both two legs by 3 cm you will reduce the hypotenuse by 4 cm. Determine the length of this legs.
  • Thunderstorm
    blesk The height of the pole before the storm is 10 m. After a storm when they come to check it they see that on the ground from the pole blows part of the column. Distance from the pole is 3 meters. At how high was the pole broken? (In fact, a rectangular tria
  • Medians and sides
    3angle Determine the size of a triangle KLM and the size of the medians in the triangle. K=(-5; -6), L=(7; -2), M=(5; 6).
  • Discriminant
    Quadratic_equation_discriminant Determine the discriminant of the equation: ?
  • Equation
    calculator_2 Equation ? has one root x1 = 8. Determine the coefficient b and the second root x2.
  • Quadratic equation
    kvadrat_2 Find the roots of the quadratic equation: 3x2-4x + (-4) = 0.
  • Roots
    parabola Determine the quadratic equation absolute coefficient q, that the equation has a real double root and the root x calculate: ?