Timetable

If a train traveling between two cities increases the speed specified in the timetable by 5 km/h, it will arrive 20 minutes earlier. If it decreases it by 5 km/h, it will arrive 25 minutes later.

How long is the route between the cities?

Correct answer:

x =  150 km

Step-by-step explanation:

t1=20 min h=20:60  h=0.33333 h t2=25 min h=25:60  h=0.41667 h  Δv=5 km/h  x = vt x = (v+Δv) (tt1) x = (vΔv) (t+t2)  vt = (v+Δv) (tt1) = vt v t1 +  Δv t  Δv t1 Δv t = v t1 + Δv t1  vt = (vΔv) (t+t2) = vt +v t2  Δv t  Δv t2  Δv t = v t2  Δv t2  v t1 + Δv   t1 = v   t2  Δv   t2 v t1v t2 =  Δv   t1  Δv   t2 v (t2  t1) =  Δv   (t1 + t2)  v=Δv t2t1t1+t2=5 0.41670.33330.3333+0.4167=45 km/h  t=Δvv t1+Δv t1=545 0.3333+5 0.3333=3103.3333 h  x=v t=45 3.3333=150 km



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
Do you want to convert velocity (speed) units?
Do you want to convert time units like minutes to seconds?

You need to know the following knowledge to solve this word math problem:

Related math problems and questions: