# Earth parallel

Earth's radius is 6374 km long. Calculate the length parallel of latitude 70°.

Result

l =  13698 km

#### Solution:

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

#### To solve this verbal math problem are needed these knowledge from mathematics:

Do you want to convert length units? Most natural application of trigonometry and trigonometric functions is a calculation of the triangles. Common and less common calculations of different types of triangles offers our triangle calculator. Word trigonometry comes from Greek and literally means triangle calculation.

## Next similar examples:

1. Rotation of the Earth
Calculate the circumferential speed of the Earth's surface at a latitude of 61°​​. Consider a globe with a radius of 6378 km.
2. Sphere slices
Calculate volume and surface of a sphere, if the radii of parallel cuts r1=31 cm, r2=92 cm and its distance v=25 cm.
3. Iron ball
The iron ball has a weight of 100 kilograms. Calculate the volume, radius, and surface if the iron's density is h = 7.6g/cm3.
4. Spherical cap
Place a part of the sphere on a 4.6 cm cylinder so that the surface of this section is 20 cm2. Determine the radius r of the sphere from which the spherical cap was cut.
5. Spherical cap
From the sphere of radius 18 was truncated spherical cap. Its height is 12. What part of the volume is spherical cap from whole sphere?
6. Cube in ball
Cube is inscribed into sphere of radius 241 cm. How many percent is the volume of cube of the volume of sphere?
7. Sphere in cone
A sphere of radius 3 cm desribe cone with minimum volume. Determine cone dimensions.
8. Two balls
Two balls, one 8cm in radius and the other 6cm in radius, are placed in a cylindrical plastic container 10cm in radius. Find the volume of water necessary to cover them.
9. Cubes
One cube is inscribed sphere and the other one described. Calculate difference of volumes of cubes, if the difference of surfaces in 257 mm2.
10. Hollow sphere
Calculate the weight of a hollow tungsten sphere (density 19.3 g/cm3), if the inner diameter is 14 cm and wall thickness is 3 mm.
11. Balls
Ping pong balls have a diameter of approximately 4.6 cm. They are sold in boxes of 4 pieces: each box has the shape of a cuboid with a square base. The balls touch the walls of the box. Calculate what portion of the internal volume of the box is filled w
12. Cube in a sphere
The cube is inscribed in a sphere with volume 6116 cm3. Determine the length of the edges of a cube.
13. Sphere
Surface of the sphere is 2820 cm2, weight is 71 kg. What is its density?
14. Half-sphere roof
The roof above the castle tower has the shape of a 12.8 m diameter half-sphere. What is the cost of this roof, if the cost of 1 square meter is 12 euros and 40 cents?
15. MO SK/CZ Z9–I–3
John had the ball that rolled into the pool and it swam in the water. Its highest point was 2 cm above the surface. Diameter of circle that marked the water level on the surface of the ball was 8 cm. Determine the diameter of John ball.
16. Balls
Three metal balls with volumes V1=71 cm3 V2=78 cm3 and V3=64 cm3 melted into one ball. Determine it's surface area.
17. Sphere A2V
Surface of the sphere is 241 mm2. What is its volume?