Surveyors mark 4 points on the surface of the globe so that their distances are the same. What is their distance from each other?

Correct answer:

x =  10403.7994 km
d =  12580.2699 km

Step-by-step explanation:

R=6371 km R=38 x  x=R/38=6371/38=10403.7994 km=1.040104 km
d=49 π 2 R=49 3.1416 2 6371=12580.2699 km=1.258104 km

We will be pleased if You send us any improvements to this math problem. Thank you!

Showing 1 comment:
Theme - problem of a tetrahedron  (4 vertices). The sphere  - circumsphere (Earth) is described by this tetrahedron and we are looking from its radius to the side length. From formula.


Tips to related online calculators
Do you want to convert length units?

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions:

  • The Earth
    earth The Earth's surface is 510,000,000 km2. Calculates the radius, equator length, and volume of the Earth, assuming the Earth has the shape of a sphere.
  • The spacecraft
    Sputnik_670 The spacecraft spotted a radar device at altitude angle alpha = 34 degrees 37 minutes and had a distance of u = 615km from Earth's observation point. Calculate the distance d of the spacecraft from Earth at the moment of observation. Earth is considered a
  • Moon
    zem_mesic We see Moon in the perspective angle 28'. Moon's radius is 1740 km at the time of the full moon. Calculate the mean distance of the Moon from the Earth.
  • Rotation of the Earth
    earth_1 Calculate the circumferential speed of the Earth's surface at a latitude of 61°​​. Consider a globe with a radius of 6378 km.
  • Above Earth
    aboveEarth To what height must a boy be raised above the earth to see one-fifth of its surface.
  • Circle and square
    square_axes An ABCD square with a side length of 100 mm is given. Calculate the radius of the circle that passes through the vertices B, C and the center of the side AD.
  • What percentage
    astronaut What percentage of the Earth’s surface is seen by an astronaut from a height of h = 350 km. Take the Earth as a sphere with the radius R = 6370 km
  • Earth parallel
    parallels Earth's radius is 6370 km long. Calculate the length parallel of latitude 50°.
  • Inscribed circle
    Cube_with_inscribed_sphere A circle is inscribed at the bottom wall of the cube with an edge (a = 1). What is the radius of the spherical surface that contains this circle and one of the vertex of the top cube base?
  • Meridian
    Globe What is the distance (length) the Earth's meridian 23° when the radius of the Earth is 6370 km?
  • Airplane
    tu-144 Aviator sees part of the earth's surface with an area of 200,000 square kilometers. How high he flies?
  • Sphere cut
    odsek_gule A sphere segment is cut off from a sphere k with radius r = 1. The volume of the sphere inscribed in this segment is equal to 1/6 of the segment's volume. What is the distance of the cutting plane from the center of the sphere?
  • Tropics and polar zones
    circles_on_Earth What percentage of the Earth's surface lies in the tropical, temperate, and polar zone? Individual zones are bordered by tropics 23°27' and polar circles 66°33'.
  • Sphere in cone
    sphere_in_cone A sphere is inscribed in the cone (the intersection of their boundaries consists of a circle and one point). The ratio of the surface of the ball and the contents of the base is 4: 3. A plane passing through the axis of a cone cuts the cone in an isoscele
  • The ball
    sphere4 The ball has a radius of 2m. What percentage of the surface and volume is another sphere whose radius is 20% larger?
  • Sphere
    cone_sphere_center_1 Intersect between plane and a sphere is a circle with a radius of 60 mm. Cone whose base is this circle and whose apex is at the center of the sphere has a height of 34 mm. Calculate the surface area and volume of a sphere.
  • Tetrahedron
    tetrahedron (1) Calculate height and volume of a regular tetrahedron whose edge has a length 6 cm.