Combinations calculator
The calculator finds the number of combinations of the k-th class from n elements without repetition. A combination with repetition of k objects from n is a way of selecting k objects from a list of n. The order of selection does not matter and each object can be selected once (without repeated).Calculation:
Ck(n)=(kn)=k!(n−k)!n! n=10 k=4 C4(10)=(410)=4!(10−4)!10!=4⋅3⋅2⋅110⋅9⋅8⋅7=210
The number of combinations: 210
A bit of theory - the foundation of combinatorics
Combinations
A combination of a k-th class of n elements is an unordered k-element group formed from a set of n elements. The elements are not repeated, and it does not matter the order of the group's elements. In mathematics, disordered groups are called sets and subsets. Their number is a combination number and is calculated as follows:Ck(n)=(kn)=k!(n−k)!n!
A typical example of combinations is that we have 15 students and we have to choose three. How many will there be?
Foundation of combinatorics in word problems
- Rectangles
How many rectangles with area 8855 cm² whose sides are natural numbers?
- Count of triangles
On each side of an ABCD square is 10 internal points. Determine the number of triangles with vertices at these points.
- Hockey game
In the hockey game, they scored six goals. The Czechs played against Finland. The Czechs won 4:2. In what order did they fall goals? How many game sequences were possible during the game?
- Five-digit numbers
How many different five-digit numbers can be created from the number 2,3,5 if the number 2 appears in the number twice and the number 5 also twice?
- Playmakers + coach
In a basketball game, two pivots, two wings, and one point guard play. The coach has three pivots, four wing players, and two playmakers available on the bench. How many different five players can a coach send to the board during a game?
more math problems »