Fraction calculator
This calculator adds two fractions. First, all fractions are converted to a common denominator when they have different denominators. To do this, find the Least Common Denominator (LCD) or multiply all denominators to determine a common denominator. Once all denominators are the same, add the numerators and place the result over the common denominator. Finally, simplify the result to its lowest terms or convert it to a mixed number.
The result:
2/3 + 4/5 = 22/15 = 1 7/15 ≅ 1.4666667
The result spelled out in words is twenty-two fifteenths (or one and seven fifteenths).How do we solve fractions step by step?
- Add: 2/3 + 4/5 = 2 · 5/3 · 5 + 4 · 3/5 · 3 = 10/15 + 12/15 = 10 + 12/15 = 22/15 
 It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 5) = 15. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 5 = 15. In the following intermediate step, it cannot further simplify the fraction result by canceling.
 In other words, two thirds plus four fifths equals twenty-two fifteenths.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
| Symbol | Symbol name | Symbol Meaning | Example | 
|---|---|---|---|
| + | plus sign | addition | 1/2 + 1/3 | 
| - | minus sign | subtraction | 1 1/2 - 2/3 | 
| * | asterisk | multiplication | 2/3 * 3/4 | 
| × | times sign | multiplication | 2/3 × 5/6 | 
| : | division sign | division | 1/2 : 3 | 
| / | division slash | division | 1/3 / 5 | 
| : | colon | complex fraction | 1/2 : 1/3 | 
| ^ | caret | exponentiation / power | 1/4^3 | 
| () | parentheses | calculate expression inside first | -3/5 - (-1/4) | 
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
 
-  BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
 
-  BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
 
- GEMDAS: Grouping symbols (brackets: (){}), Exponents, Multiplication, Division, Addition, Subtraction.
 
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., + and -, or * and /) must be evaluated from left to right.
Fractions in word problems:
- Reduce fractions  The following fraction is reduced to its lowest terms except one. Which of these: A. 98/99 B. 73/179 C. 1/250 D. 81/729 The following fraction is reduced to its lowest terms except one. Which of these: A. 98/99 B. 73/179 C. 1/250 D. 81/729
- Chef Davido  Italian chef Davido put 36 pieces of pineapple on his Hawaiian pizza and then divided it into sixths so that each piece had the same amount of pineapple. Luke bought one sixth of Davido's pizza and ate it with gusto. How many pieces of pineapple did Luke Italian chef Davido put 36 pieces of pineapple on his Hawaiian pizza and then divided it into sixths so that each piece had the same amount of pineapple. Luke bought one sixth of Davido's pizza and ate it with gusto. How many pieces of pineapple did Luke
- Convert 8  Convert 11/2 into a percent? Convert 11/2 into a percent?
- Hardware store  At the hardware store, 1/4 of the nails are size 2d, and 3/8 of the nails are size 4d. What fraction of the nails are either size 2d or 4d? At the hardware store, 1/4 of the nails are size 2d, and 3/8 of the nails are size 4d. What fraction of the nails are either size 2d or 4d?
- Add to subtracting  Solve a simple equation with fractions: n-1/6=1/2 Solve a simple equation with fractions: n-1/6=1/2
- Convert  5883   Convert ratio to basic form: 24:32 Convert ratio to basic form: 24:32
- 6 cups of strawberries  Mr. Hunter decided to make a healthy snack for the 20 students in his class. He gave each student a dish of yogurt and divided 6 cups of strawberries equally among the dishes. How many cups of strawberries did each student get in their yogurt? Write your Mr. Hunter decided to make a healthy snack for the 20 students in his class. He gave each student a dish of yogurt and divided 6 cups of strawberries equally among the dishes. How many cups of strawberries did each student get in their yogurt? Write your
more math problems »
Last Modified: August 28, 2025
