Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
5 5/6 - 6 1/6 = -1/3 ≅ -0.3333333
The result spelled out in words is minus one third.How do we solve fractions step by step?
- Conversion a mixed number 5 5/6 to a improper fraction: 5 5/6 = 5 5/6 = 5 · 6 + 5/6 = 30 + 5/6 = 35/6
To find a new numerator:
a) Multiply the whole number 5 by the denominator 6. Whole number 5 equally 5 * 6/6 = 30/6
b) Add the answer from the previous step 30 to the numerator 5. New numerator is 30 + 5 = 35
c) Write a previous answer (new numerator 35) over the denominator 6.
Five and five sixths is thirty-five sixths. - Conversion a mixed number 6 1/6 to a improper fraction: 6 1/6 = 6 1/6 = 6 · 6 + 1/6 = 36 + 1/6 = 37/6
To find a new numerator:
a) Multiply the whole number 6 by the denominator 6. Whole number 6 equally 6 * 6/6 = 36/6
b) Add the answer from the previous step 36 to the numerator 1. New numerator is 36 + 1 = 37
c) Write a previous answer (new numerator 37) over the denominator 6.
Six and one sixth is thirty-seven sixths. - Subtract: 35/6 - 37/6 = 35 - 37/6 = -2/6 = 2 · -1/2 · 3 = -1/3
Both fractions have the same denominator, which is then the common denominator in the subtracting them. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, thirty-five sixths minus thirty-seven sixths equals minus one third.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: (){}), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., + and -, or * and /) must be evaluated from left to right.
Fractions in word problems:
- Identify improper fraction
How do you identify improper fractions? Which is improper: A) 3/4 B) 32/15 C) 3/9 D) 2 2/11
- The cost 7
The cost of a pen is Rs. 20/3, and that of a pencil is 25/6. Which costs more and by how much?
- Students 34
Students were surveyed as part of a Statistics project to determine if younger adults are more likely to have tattoos. The results are listed in the two-way table below: age; At least one tattoo; No tattoo; Row totals Age 18 - 29; 165 ; 342; 507 Age 30 -
- Chocolate 82258
How many pieces does the chocolate have if I ate 6/7 of it, which is 12 pieces?
- Decadic number
What is the expanded form of this number? 18.029 A: (1x10)+(8x1)+(2x1/10)+(9x1/100) B: (1×10)+(8×1)+(2×1/10)+(9×1/1,000) C: (1×10)+(8×1)+(2×1/100)+(9×1/1,000) D: (1×10)+(8×1)+(2×11/00)+(9×1/100)
- Anesa
Anesa ate 3/4 of her pizza, and Eman ate 1/4 of her pizza. Who ate the greater part of the pizza?
- Luke
Luke, Seth, and Anja have empty glasses. Mr. Gabel pours 3/6 cups of orange juice into Seth's glass. Then he poured 1/6 cup of orange juice in Luke's glass and 2/6 cup of orange juice in Anja's glass. Who gets the MOST orange juice?
more math problems »
Last Modified: May 12, 2025