Find the equation of a parabola that contains the points at A[10; -5], B[18; -7], C[20; 0]. (use y = ax2+bx+c)

Correct answer:

a =  0.375
b =  -10.75
c =  65

Step-by-step explanation:

f(x) = ax2+bx+c=y  a 102+b (10)+c=5 a 182+b (18)+c=7 a 202+b (20)+c=0  100a+10b+c=5 324a+18b+c=7 400a+20b+c=0  Pivot:Row1Row3 400a+20b+c=0 324a+18b+c=7 100a+10b+c=5  Row2400324 Row1Row2 400a+20b+c=0 1.8b+0.19c=7 100a+10b+c=5  Row3400100 Row1Row3 400a+20b+c=0 1.8b+0.19c=7 5b+0.75c=5  Pivot:Row2Row3 400a+20b+c=0 5b+0.75c=5 1.8b+0.19c=7  Row351.8 Row2Row3 400a+20b+c=0 5b+0.75c=5 0.08c=5.2  c=0.085.2=65 b=550.75c=550.75 65=10.75 a=400020bc=400020 (10.75)65=0.375  a=83=0.375 b=443=10.75 c=65
c=65  f(x) = y = a   x2+b   x + c

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: