# Volume of three cuboids

Calculate the total volume of all cuboids for which the edges' size are in a ratio of 1:2:3, and one of the edges has a size 6 cm.

### Correct answer:

Tips to related online calculators

Check out our ratio calculator.

Tip: Our volume units converter will help you with the conversion of volume units.

Tip: Our volume units converter will help you with the conversion of volume units.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Cuboid face diagonals

The lengths of the cuboid edges are in the ratio 1: 2: 3. Will the lengths of its diagonals be the same ratio? The cuboid has dimensions of 5 cm, 10 cm, and 15 cm. Calculate the size of the wall diagonals of this cuboid. - Cuboid edges

Calculate the volume and surface of a cuboid whose edge lengths are in the ratio 2: 3: 4 and the longest edge measures 10cm. - Ratio of edges

The dimensions of the cuboid are in a ratio 3: 1: 2. The body diagonal has a length of 28 cm. Find the volume of a cuboid. - Ratio-cuboid

The lengths of the edges of the cuboid are in the ratio 2: 3: 6. Its body diagonal is 14 cm long. Calculate the volume and surface area of the cuboid. - Cuboid - ratios

The sizes of the edges of the cuboid are in the ratio 2: 3: 5. The smallest wall has an area of 54 cm^{2}. Calculate the surface area and volume of this cuboid. - Cuboid edges in ratio

Cuboid edges lengths are in ratio 2:4:6. Calculate their lengths if you know that the cuboid volume is 24576 cm^{3}. - Cuboid and ratio

Cuboid has dimensions in ratio 1:2:6 and the surface area of the cuboid is 1000 dm^{2}. Calculate the volume of the cuboid. - Cuboid and ratio

Find the dimensions of a cuboid having a volume of 810 cm^{3}if the lengths of its edges coming from the same vertex are in ratio 2: 3: 5 - Body diagonal

Calculate the volume of a cuboid whose body diagonal u is equal to 6.1 cm. Rectangular base has dimensions of 3.2 cm and 2.4 cm - Cuboid - edges

The cuboid has dimensions in ratio 4: 3: 5, the shortest edge is 12 cm long. Find: (A) the lengths of the remaining edges, (B) the surface of the cuboid, (C) the volume of the cuboid - Cuboids in cube

How many cuboids with dimensions of 6 cm, 8 cm and 12 cm can fit into a cube with side 96 centimeters? - Cuboid diagonal

Calculate the volume and surface area of the cuboid ABCDEFGH, which sides a, b, c has dimensions in the ratio of 9:3:8. If you know that the diagonal wall AC is 86 cm, and the angle between AC and space diagonal AG is 25 degrees. - Surface of cubes

Peter molded a cuboid 2 cm, 4cm, 9cm of plasticine. Then the plasticine split into two parts in a ratio 1:8. From each piece made a cube. In what ratio are the surfaces of these cubes? - Cuboid

The sum of the lengths of the three edges of the cuboid that originate from one vertex is 210 cm. Edge length ratio is 7: 5: 3. Calculate the length of the edges. - Prism X

The prism with the edges of the lengths x cm, 2x cm, and 3x cm has volume 20250 cm^{3}. What is the area of the surface of the prism? - Cube, cuboid, and sphere

Volumes of a cube and a cuboid are in ratio 3: 2. Volumes of sphere and cuboid are in ratio 1: 3. At what rate are the volumes of cube, cuboid, and sphere? - Cuboid edges

The lengths of the cuboid edges are in the ratio 2: 3: 4. Find their length if you know that the surface of the cuboid is 468 m^{2}.