# Three points

Three points K (-3; 2), L (-1; 4), M (3, -4) are given. Find out:

(a) whether the triangle KLM is right

b) calculate the length of the line to the k side

c) write the coordinates of the vector LM

d) write the directional form of the KM side

e) write the directional form of the axis of the KM side

(a) whether the triangle KLM is right

b) calculate the length of the line to the k side

c) write the coordinates of the vector LM

d) write the directional form of the KM side

e) write the directional form of the axis of the KM side

**Result**Tips to related online calculators

Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.

Our vector sum calculator can add two vectors given by their magnitudes and by included angle.

Do you want to convert length units?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Our vector sum calculator can add two vectors given by their magnitudes and by included angle.

Do you want to convert length units?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- General line equations

In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the line is given by the slope form: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) t - Parametric form

Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. .. - Coordinates of a centroind

Let’s A = [3, 2, 0], B = [1, -2, 4] and C = [1, 1, 1] be 3 points in space. Calculate the coordinates of the centroid of △ABC (the intersection of the medians). - A Cartesian framework

1. In a Cartesian framework, the functions f and g we know that: the function (f) is defined by f (x) = 2x ^ 2, the function (g) is defined by g (x) = x + 3, the point (O) is the origin of the reference, point (C) is the point of intersection of the graph - Medians and sides

Triangle ABC in the plane Oxy; are the coordinates of the points: A = 2.7 B = -4.3 C-6-1 Try calculate lengths of all medians and all sides. - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - Space vectors 3D

The vectors u = (1; 3; -4), v = (0; 1; 1) are given. Find the size of these vectors, calculate the angle of the vectors, the distance between the vectors. - Three points 4

The line passed through three points - see table: x y -6 4 -4 3 -2 2 Write line equation in y=mx+b form - Three points 2

The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB, and DC is parallel to AB. Calculate the coordinates of D. - CoG center

Find the position of the center of gravity of a system of four mass points having masses, m_{1}, m_{2}= 2 m1, m_{3}= 3 m1, and m_{4}= 4 m_{1}, if they lie at the vertices of an isosceles tetrahedron. (in all cases, between adjacent material points, the distance - Sphere equation

Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1). - Vertices of a right triangle

Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle. - Vector 7

Given vector OA(12,16) and vector OB(4,1). Find vector AB and vector |A|. - There

There is a triangle ABC: A (-2,3), B (4, -1), C (2,5). Determine the general equations of the lines on which they lie: a) AB side, b) height to side c, c) Axis of the AB side, d) median ta to side a - Vector perpendicular

Find the vector a = (2, y, z) so that a⊥ b and a ⊥ c where b = (-1, 4, 2) and c = (3, -3, -1) - Calculate 8

Calculate the coordinates of point B axially symmetrical with point A[-1, -3] along a straight line p : x + y - 2 = 0. - Right angled triangle 2

LMN is a right-angled triangle with vertices at L(1,3), M(3,5), and N(6,n). Given angle LMN is 90° find n