Euler problem

Someone buys a 180 tolars towels. If it was for the same money of 3 more towels, it would be 3 tolars cheaper each. How many were towels?

Result

n =  12

Solution:

180=cn 180=(c3)(n+3) n>0  n=12 c=15180=c n \ \\ 180 = (c-3)(n+3) \ \\ n>0 \ \\ \ \\ n = 12 \ \\ c = 15



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Do you have a system of equations and looking for calculator system of linear equations?

Next similar math problems:

  1. A fisherman
    worms A fisherman buys carnivores to fish. He could buy either 6 larvae and 4 worms for $ 132 or 4 larvae and 7 worms per $ 127. What is the price of larvae and worms? Argue the answer.
  2. Savings
    penize_29 Paul has a by half greater savings than half Stanley, but the same savings as Radek. Staney save 120 CZK less than Radek. What savings have 3 boys together?
  3. Casey
    ham Casey bought a 15.4 pound turkey and an 11.6 pound ham for thanksgiving and paid $38.51. Her friend Jane bought a 10.2 pound turkey and a 7.3 pound ham from the same store and paid $24.84. Find the cost per pound of turkey and the cost per pound of ham.
  4. 3 masons
    cnb_1 3 masons received 7,700 CZK. The second half received 1/2 more than the first and third twice more than the second mason. How much they each got crowns?
  5. Tour
    money_11 35 people went on a tour and paid 8530, -. Employees pay 165, and family members 310. How many employees and how many family members went to the tour?
  6. Sweets
    sladkosti 3 chocolate and 7 cakes cost 85, - CZK. 2 chocolates and 6 cakes cost 86, - CZK. How much is 5 chocolates and 9 cakes? I wonder how to get the result, but only by logic without the use of a system of equations
  7. Candies
    bonbon If Alena give Lenka 3 candy will still have 1 more candy. If Lenka give Alena 1 candy Alena will hame twice more than Lenka. How many candies have each of them?
  8. Circus
    cirkus On the circus performance was 150 people. Men were 10 less than women and children 50 more than adults. How many children were in the circus?
  9. Theatro
    divadlo_1 Theatrical performance was attended by 480 spectators. Women were in the audience 40 more than men and children 60 less than half of adult spectators. How many men, women and children attended a theater performance?
  10. Elimination method
    rovnice_1 Solve system of linear equations by elimination method: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  11. Two equations
    children_23 Solve equations (use adding and subtracting of linear equations): -4x+11y=5 6x-11y=-5
  12. Three unknowns
    matrix_1 Solve the system of linear equations with three unknowns: A + B + C = 14 B - A - C = 4 2A - B + C = 0
  13. Balls
    kulicky Michal said to Martin: give me one ball and I'll have twice as you. Martin said: give me 4 and we will have equally. How many balls each have?
  14. Equation
    calculator_2 Equation ? has one root x1 = 8. Determine the coefficient b and the second root x2.
  15. Equations
    p1110617 Solve following system of equations: 6(x+7)+4(y-5)=12 2(x+y)-3(-2x+4y)=-44
  16. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  17. Mushrooms
    huby_2 Eva and Jane collected 114 mushrooms together. Eve found twice as much as Jane. How many mushrooms found each of them?