Tokens

In the non-transparent bags are red, white, yellow, blue tokens. We 3times pull one tokens and again returned it, write down all possibilities.

Result

n =  64

Solution:

AAA AAA AAA AAA AAB AAB AAB AAB AAC AAC AAC AAC AAD AAD AAD AAD ABA ABA ABA ABA ABB ABB ABB ABB ABC ABC ABC ABC ABD ABD ABD ABD ACA ACA ACA ACA ACB ACB ACB ACB ACC ACC ACC ACC ACD ACD ACD ACD ADA ADA ADA ADA ADB ADB ADB ADB ADC ADC ADC ADC ADD ADD ADD ADD BAA BAA BAA BAA BAB BAB BAB BAB BAC BAC BAC BAC BAD BAD BAD BAD BBA BBA BBA BBA BBB BBB BBB BBB BBC BBC BBC BBC BBD BBD BBD BBD BCA BCA BCA BCA BCB BCB BCB BCB BCC BCC BCC BCC BCD BCD BCD BCD BDA BDA BDA BDA BDB BDB BDB BDB BDC BDC BDC BDC BDD BDD BDD BDD CAA CAA CAA CAA CAB CAB CAB CAB CAC CAC CAC CAC CAD CAD CAD CAD CBA CBA CBA CBA CBB CBB CBB CBB CBC CBC CBC CBC CBD CBD CBD CBD CCA CCA CCA CCA CCB CCB CCB CCB CCC CCC CCC CCC CCD CCD CCD CCD CDA CDA CDA CDA CDB CDB CDB CDB CDC CDC CDC CDC CDD CDD CDD CDD DAA DAA DAA DAA DAB DAB DAB DAB DAC DAC DAC DAC DAD DAD DAD DAD DBA DBA DBA DBA DBB DBB DBB DBB DBC DBC DBC DBC DBD DBD DBD DBD DCA DCA DCA DCA DCB DCB DCB DCB DCC DCC DCC DCC DCD DCD DCD DCD DDA DDA DDA DDA DDB DDB DDB DDB DDC DDC DDC DDC DDD DDD DDD DDD n=43=64AAA \ \\ AAA \ \\ AAA \ \\ AAA \ \\ AAB \ \\ AAB \ \\ AAB \ \\ AAB \ \\ AAC \ \\ AAC \ \\ AAC \ \\ AAC \ \\ AAD \ \\ AAD \ \\ AAD \ \\ AAD \ \\ ABA \ \\ ABA \ \\ ABA \ \\ ABA \ \\ ABB \ \\ ABB \ \\ ABB \ \\ ABB \ \\ ABC \ \\ ABC \ \\ ABC \ \\ ABC \ \\ ABD \ \\ ABD \ \\ ABD \ \\ ABD \ \\ ACA \ \\ ACA \ \\ ACA \ \\ ACA \ \\ ACB \ \\ ACB \ \\ ACB \ \\ ACB \ \\ ACC \ \\ ACC \ \\ ACC \ \\ ACC \ \\ ACD \ \\ ACD \ \\ ACD \ \\ ACD \ \\ ADA \ \\ ADA \ \\ ADA \ \\ ADA \ \\ ADB \ \\ ADB \ \\ ADB \ \\ ADB \ \\ ADC \ \\ ADC \ \\ ADC \ \\ ADC \ \\ ADD \ \\ ADD \ \\ ADD \ \\ ADD \ \\ BAA \ \\ BAA \ \\ BAA \ \\ BAA \ \\ BAB \ \\ BAB \ \\ BAB \ \\ BAB \ \\ BAC \ \\ BAC \ \\ BAC \ \\ BAC \ \\ BAD \ \\ BAD \ \\ BAD \ \\ BAD \ \\ BBA \ \\ BBA \ \\ BBA \ \\ BBA \ \\ BBB \ \\ BBB \ \\ BBB \ \\ BBB \ \\ BBC \ \\ BBC \ \\ BBC \ \\ BBC \ \\ BBD \ \\ BBD \ \\ BBD \ \\ BBD \ \\ BCA \ \\ BCA \ \\ BCA \ \\ BCA \ \\ BCB \ \\ BCB \ \\ BCB \ \\ BCB \ \\ BCC \ \\ BCC \ \\ BCC \ \\ BCC \ \\ BCD \ \\ BCD \ \\ BCD \ \\ BCD \ \\ BDA \ \\ BDA \ \\ BDA \ \\ BDA \ \\ BDB \ \\ BDB \ \\ BDB \ \\ BDB \ \\ BDC \ \\ BDC \ \\ BDC \ \\ BDC \ \\ BDD \ \\ BDD \ \\ BDD \ \\ BDD \ \\ CAA \ \\ CAA \ \\ CAA \ \\ CAA \ \\ CAB \ \\ CAB \ \\ CAB \ \\ CAB \ \\ CAC \ \\ CAC \ \\ CAC \ \\ CAC \ \\ CAD \ \\ CAD \ \\ CAD \ \\ CAD \ \\ CBA \ \\ CBA \ \\ CBA \ \\ CBA \ \\ CBB \ \\ CBB \ \\ CBB \ \\ CBB \ \\ CBC \ \\ CBC \ \\ CBC \ \\ CBC \ \\ CBD \ \\ CBD \ \\ CBD \ \\ CBD \ \\ CCA \ \\ CCA \ \\ CCA \ \\ CCA \ \\ CCB \ \\ CCB \ \\ CCB \ \\ CCB \ \\ CCC \ \\ CCC \ \\ CCC \ \\ CCC \ \\ CCD \ \\ CCD \ \\ CCD \ \\ CCD \ \\ CDA \ \\ CDA \ \\ CDA \ \\ CDA \ \\ CDB \ \\ CDB \ \\ CDB \ \\ CDB \ \\ CDC \ \\ CDC \ \\ CDC \ \\ CDC \ \\ CDD \ \\ CDD \ \\ CDD \ \\ CDD \ \\ DAA \ \\ DAA \ \\ DAA \ \\ DAA \ \\ DAB \ \\ DAB \ \\ DAB \ \\ DAB \ \\ DAC \ \\ DAC \ \\ DAC \ \\ DAC \ \\ DAD \ \\ DAD \ \\ DAD \ \\ DAD \ \\ DBA \ \\ DBA \ \\ DBA \ \\ DBA \ \\ DBB \ \\ DBB \ \\ DBB \ \\ DBB \ \\ DBC \ \\ DBC \ \\ DBC \ \\ DBC \ \\ DBD \ \\ DBD \ \\ DBD \ \\ DBD \ \\ DCA \ \\ DCA \ \\ DCA \ \\ DCA \ \\ DCB \ \\ DCB \ \\ DCB \ \\ DCB \ \\ DCC \ \\ DCC \ \\ DCC \ \\ DCC \ \\ DCD \ \\ DCD \ \\ DCD \ \\ DCD \ \\ DDA \ \\ DDA \ \\ DDA \ \\ DDA \ \\ DDB \ \\ DDB \ \\ DDB \ \\ DDB \ \\ DDC \ \\ DDC \ \\ DDC \ \\ DDC \ \\ DDD \ \\ DDD \ \\ DDD \ \\ DDD \ \\ n=4^3=64



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
See also our permutations calculator.
See also our variations calculator.
Would you like to compute count of combinations?

Following knowledge from mathematics are needed to solve this word math problem:

Next similar math problems:

  1. Variations
    pantagram Determine the number of items when the count of variations of fourth class without repeating is 42 times larger than the count of variations of third class without repetition.
  2. Variations 4/2
    pantagram_1 Determine the number of items when the count of variations of fourth class without repeating is 600 times larger than the count of variations of second class without repetition.
  3. Toys
    toys 3 children pulled 12 different toys from a box. Many ways can be divided toys so that each children had at least one toy?
  4. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  5. Peak
    lanovka.JPG Uphill leads 2 paths and 1 lift. a) How many options back and forth are there? b) How many options to get there and back by not same path are there? c) How many options back and forth are there that we go at least once a lift?
  6. Election 4
    vote_1 In a certain election there are 3 candidates for president 5 for secretory and 2 for tresurer. Find how many ways the election may (turn out/held).
  7. Neighborhood
    glasses_1 I have 7 cups: 1 2 3 4 5 6 7. How many opportunities of standings cups are there if 1 and 2 are always neighborhood?
  8. Olympics metals
    olympics In how many ways can be win six athletes medal positions in the Olympics? Metal color matters.
  9. Medals
    medails In how many ways can be divided gold, silver and bronze medal among 21 contestant?
  10. Mumbai
    Mumbai A job placement agency in Mumbai had to send ten students to five companies two to each. Two of the companies are in Mumbai and others are outside. Two of the students prefer to work in Mumbai while three prefer to work outside. In how many ways assignmen
  11. Disco
    vencek On the disco goes 12 boys and 15 girls. In how many ways can we select four dancing couples?
  12. Word MATEMATIKA
    math_1 How many words can be created from the word MATEMATIKA by changing the order of the letters, regardless of whether or not the words are meaningful?
  13. Password dalibor
    lock Kamila wants to change the password daliborZ by a) two consonants exchanged between themselves, b) changes one little vowel to such same great vowel c) makes this two changes. How many opportunities have a choice?
  14. 7 heroes
    7statocnych 9 heroes galloping on 9 horses behind. How many ways can sort them behind?
  15. Hearts
    hearts_cards 5 cards are chosen from a standard deck of 52 playing cards (13 hearts) with replacement. What is the probability of choosing 5 hearts in a row?
  16. Numbers
    numbers_3 How many different 3 digit natural numbers in which no digit is repeated, can be composed from digits 0,1,2?
  17. A student
    test_14 A student is to answer 8 out of 10 questions on the exam. a) find the number n of ways the student can choose 8 out of 10 questions b) find n if the student must answer the first three questions c) How many if he must answer at least 4 of the first 5 qu