Four sides of trapezoid

In the trapezoid ABCD is |AB| = 73.6 mm; |BC| = 57 mm; |CD| = 60 mm; |AD| = 58.6 mm. Calculate the size of its interior angles.

Correct answer:

A =  76.5803 °
B =  90 °
C =  90 °
D =  103.4197 °

Step-by-step explanation:

a=73.6 b=57 c=60 d=58.6 a2=ac=73.660=568=13.6 A1=arccos((d2+a22b2)/(2 d a2))=arccos((58.62+13.62572)/(2 58.6 13.6))1.3366 A=A1  °=A1 π180   °=1.3366 π180   °=76.58  °=76.5803=76°3449"
B1=arccos((b2+a22d2)/(2 b a2))=arccos((572+13.6258.62)/(2 57 13.6))1.5708 B=B1  °=B1 π180   °=1.5708 π180   °=90  °=90
C=180B=18090=90
D=180A=18076.5803103.4197 x=A+B+C+D=76.5803+90+90+103.4197=360

Try calculation via our triangle calculator.




Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Cosine rule uses trigonometric SAS triangle calculator.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: