Lichoběžník - 4 strany
V lichoběžníku ABCD je |AB|=73,6 mm; |BC|=57 mm; |CD| =60 mm; |AD|=58,6 mm. Vypočítejte velikosti jeho vnitřních úhlů.
Správná odpověď:

Zobrazuji 1 komentář:
Tipy na související online kalkulačky
Kosinovú větu přímo používá kalkulačka SUS trojúhelníku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- planimetrie
- trojúhelník
- lichoběžník
- kosinová věta
- základní funkce
- úvaha
- goniometrie a trigonometrie
- kosinus
- arkuskosinus
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- V lichoběžníku 5
V lichoběžníku ABCD (AB II CD) je α = 57°, γ = 4β. Vypočítejte velikost všech vnitřních úhlů.
- Rovnoramenný 2588
Daný je rovnoramenný lichoběžník ABCD, ve kterém platí |AB|= 2|BC|= 2|CD|= 2|DA|. Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL|= 2|LD|, a na jeho straně DA je bod M takový, že|DM|= 2|MA|. Určete velikosti v
- V rovnoramenném 4
V rovnoramenném lichoběžníku ABCD jsou dány jeho základny AB=20cm, CD=12cm a ramena AD=BC=8cm. Určete jeho výšku a úhel alfa při vrcholu A
- Rovnoramenný lichoběžník
Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikost
- Čtyřboký hranol 6
Vypočítej povrch čtyřbokého hranolu ABCDA'B'C'D' s lichoběžníkovou podstavou ABCD. Výška hranolu je 12 cm; údaje o lichoběžníku ABCD: délka základny AB je 8 cm, délka základny CD je 3 cm, délka ramene BC je 4 cm a délka úhlopříčky AC je 7 cm. Napovíme: Na
- Plavecký
Plavecký bazén dlouhý 30 metrů je naplněn vodou do hloubky 1 metru na mělkém konci a 5 metrů na hlubokém konci a svislé ploše bazénu má tvar lichoběžníku s plochou danou S (abcd). = 1/2 (ab + cd) x ad. Jaká je plocha průřezu abcd?
- Trojúhelníku 4908
Lichoběžník ABCD se základnami AB=a, CD=c má výšku v. Bod S je střed ramene BC. Dokažte, že obsah trojúhelníku ASD se rovná polovině obsahu lichoběžníku ABCD.
- Sestrojte 9
Sestrojte lichoběžník ABCD(AB//CD): |AB|=7cm |BC|=3,5cm |CD|=4cm A velikost úhlu ABC=60°
- Lichoběžník - PU
Parcela má tvar pravoúhlého lichoběžníku ABCD, kde ABIICD s pravým úhlem u vrcholu B. Strana AB má délku 36 m. Délky stran AB a BC jsou v poměru 12:7. Délky stran AB a CD jsou vpoměru 3:2. Vypočítejte spotřebu pletiva na oplocení parcely.
- Trojúhelníku 60993
V pravoúhlém trojúhelníku ABC vypočítejte velikost vnitřních úhlů, pokud/AB/ = 13 cm; /BC/ = 12 cm a/AC/ = 5 cm.
- V čtverci
V čtverci ABCD se stranou a = 6 cm je bod E střed strany AB a bod F střed strany BC. Vypočítejte velikost všech úhlů trojúhelníku DEF a délky jeho stran.
- Ve čtyřúhelníku
Ve čtyřúhelníku ABCD, jehož vrcholy leží na dané kružnici, je úhel u vrcholu A roven 58 stupňů a úhel při vrcholu B 134 stupňů. Vypočítejte velikosti zbývajících vnitřních úhlů.
- Čtyřúhelníku 80729
Čtyřúhelník ABCD má délky stran AB=13cm, CD=3cm, AD=4cm. Úhly ACB a ADC jsou pravé. Vypočítej obvod čtyřúhelníku ABCD.
- Maxwellova můstek
Čtyři ramena Maxwellova indukčního můstku jsou: rameno AB obsahuje indukční cívku indukčnosti L1 s odporem R1. Ramena BC a CD obsahují neindukčné odpory 200 Ω a 100 Ω. Rameno AD obsahuje cívku indukčnosti L2 a odporu R2. Rovnováha můstku se získá, když L2
- Pravoúhlý lichoběžník 5
Pravoúhlý lichoběžník ABCD, jehož rameno AD je kolmé na základny AB a CD, má obsah 15cm čtverečních. Základny mají délky AB=6cm, CD=4cm. Vypočítej délku úhlopříčky AC.
- Trojúhelníku 3428
Daný je lichoběžník ABCD se základnami AB, CD. Nechť K je střed strany AB a L je střed strany CD. Obsah trojúhelníku ALB je 15 cm² a obsah trojúhelníku DKC je 10 cm². Vypočítejte obsah lichoběžníku ABCD.
- Čtyřúhelníku 81469
Dán je čtverec ABCD. Střed AB je E, střed BC je F, CD je G a střed DA je H. Spojíme AF, BG, CH a DE. Uvnitř čtverce (přibližně uprostřed) průsečíky těchto úseček vytvoří čtyřúhelník. Vypočítejte obsah tohoto čtyřúhelníku. Děkuji